T(I)-Mathematics-H-2-(Mod.-III)

2021

MATHEMATICS — HONOURS

Second Paper

(Module – III)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

R, Q, N denote the sets of real numbers, rational numbers and natural numbers respectively.

Group – A

(Marks : 40)

Answer any four questions.

- 1. (a) State and prove Archimedean property of real numbers.
 - (b) Find Sup A and inf A, if exist, where $A = \left\{ x \in \mathbb{R} : x^2 3x 10 < 0 \right\}$.
 - (c) Define neighbourhood of a point in \mathbb{R} . Check whether the set $\left\{\frac{1}{n} \mid n \in \mathbb{N} \mid \right\} \cup \{0\}$ is a neighbourhood of 0 or not. (1+3)+3+(1+2)
- **2.** (a) Show that [0, 1] is not enumerable.
 - (b) Prove or disprove : A countable set cannot have uncountable number of limit points.
 - (c) Show that the set $\{x \in \mathbb{R} : \sin x = 0\}$ is countable. 4+3+3
- 3. (a) Let the sequence $\{x_n\}$ be such that $x_n \neq x_m$ for $n \neq m$. Prove that every subsequential limit of $\{x_n\}$ is a limit point of $\{x_n : n \in \mathbb{N}\}$.
 - (b) A sequence $\{x_n\}$ is as follows: $x_2 \le x_4 \le x_6 \le \dots \le x_5 \le x_3 \le x_1$ and $\{y_n\}$ is defined by $y_n = x_{2n-1} x_{2n}, n \in \mathbb{N}$ such that $\{y_n\}$ converges to zero. Show that $\{x_n\}$ is convergent.
 - (c) Show that arbitrary union of open subsets of \mathbb{R} is an open set. 3+4+3

Please Turn Over

- **4.** (a) Define Cauchy sequence. Prove that every Cauchy sequence is bounded. Is the converse true? Justify.
 - (b) Prove or disprove : The sequence $\{x_n\}$ where $x_n = \frac{n}{2} \lfloor \frac{n}{2} \rfloor$, is convergent, [x] denotes the largest integer not exceeding x.
 - (c) Prove that if $\lim_{n \to \infty} x_n = l$, then for any m > 0, $\lim_{n \to \infty} (m x_n) = m l$. (1+3+2)+2+2
- 5. (a) Let $f: \mathbb{Q} \{0\} \to \mathbb{R}$ be defined by $f(x) = x^2 \sin \frac{1}{x}, \forall x \in \mathbb{Q} \{0\}$. Does $\lim_{x \to 0} f(x)$ exist? Justify your answer.
 - (b) If $\{u_n\}_n$ and $\{v_n\}_n$ be bounded sequences of real numbers. Prove that $\overline{Lim} u_n + \overline{Lim} v_n \ge \overline{Lim} (u_n + v_n)$.
 - (c) Prove that every sequence of real numbers has a monotone subsequence.
 - (d) Prove or disprove : If $\{x_n\}$ is a bounded sequence and $\{y_n\}$ is a convergent sequence then $\{x_ny_n\}$ is a convergent sequence. 2+2+4+2
- 6. (a) Let $f: D \to \mathbb{R}$ $(D \subseteq \mathbb{R})$ be a function such that $\lim_{n \to \infty} f(x_n) = f(a)$, for any sequence $\{x_n\}$ in D converging to $a \in D$. Show that f is continuous at a.
 - (b) Correct or Justify : There exists a monotonic function defined on [0, 1] such that the function is discontinuous at every irrational point in [0, 1].
 - (c) If $f: [a, b] \to \mathbb{R}$ is continuous on [a, b], prove that f is bounded on [a, b].
 - (d) Let f, g be two real valued continuous functions of real variable and $f(x) = g(x), \forall x \in \mathbb{Q}$. Show that $f(x) = g(x), \forall x \in \mathbb{R}$. 3+2+3+2
- 7. (a) Define Lipschitz function. Show that every Lipschitz function is uniformly continuous.
 - (b) Let f: [0, 1] → [0, 1] be a continuous function. Using Intermediate Value Property of f, show that there exists a point c∈[0, 1] such that f(c) = c².
 - (c) Prove or disprove : A sequence is everywhere continuous.
 - (d) Prove or disprove : the function $f(x) = x \sin \frac{1}{x}$, $x \neq 0$, is uniformly continuous on $(0, \frac{1}{\pi})$.

(1+2)+3+2+2

T(I)-Mathematics-H-2-(Mod.-III)

Group – B

(Marks : 10)

- 8. Answer any two questions :
 - (a) If $I_{m,n} = \int \sin^m x \cos^n x \, dx$, where *m*, *n* are positive integers, then prove

$$I_{m,n} = \frac{\sin^{m-1} x \cos^{n-1} x}{m+n} + \frac{n-1}{m+n} I_{m,n-2}.$$

Hence find a reduction formula for $I_{m,n} = \int_{0}^{\pi/2} \sin^{m} x \cos^{n} x \, dx.$ 4+1

(b) Find the value of
$$\int_{0}^{1} \frac{dx}{(3+4\cos x)^2}.$$
 5

(c) Evaluate :
$$\int \frac{2xdx}{(1-x^2)\sqrt{x^4-1}}$$
 5

(d) Reduce $\lim_{n \to \infty} \left[\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n} \right]$ to a definite integral and hence find its value.

$$2+3$$

(3)