2021

MATHEMATICS - HONOURS

Second Paper

(Module - III)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
$\mathbb{R}, \mathbb{Q}, \mathbb{N}$ denote the sets of real numbers, rational numbers and natural numbers respectively.

Group - A

(Marks : 40)
Answer any four questions.

1. (a) State and prove Archimedean property of real numbers.
(b) Find $\operatorname{Sup} A$ and $\inf A$, if exist, where $A=\left\{x \in \mathbb{R}: x^{2}-3 x-10<0\right\}$.
(c) Define neighbourhood of a point in \mathbb{R}. Check whether the set $\left\{\frac{1}{n}|n \in \mathbb{N}|\right\} \cup\{0\}$ is a neighbourhood of 0 or not.
2. (a) Show that $[0,1]$ is not enumerable.
(b) Prove or disprove : A countable set cannot have uncountable number of limit points.
(c) Show that the set $\{x \in \mathbb{R}: \sin x=0\}$ is countable.
3. (a) Let the sequence $\left\{x_{n}\right\}$ be such that $x_{n} \neq x_{m}$ for $n \neq m$. Prove that every subsequential limit of $\left\{x_{n}\right\}$ is a limit point of $\left\{x_{n}: n \in \mathbb{N}\right\}$.
(b) A sequence $\left\{x_{n}\right\}$ is as follows : $x_{2} \leq x_{4} \leq x_{6} \leq \ldots . . . \leq x_{5} \leq x_{3} \leq x_{1}$ and $\left\{y_{n}\right\}$ is defined by $y_{n}=x_{2 n-1}-x_{2 n}, n \in \mathbb{N}$ such that $\left\{y_{n}\right\}$ converges to zero. Show that $\left\{x_{n}\right\}$ is convergent.
(c) Show that arbitrary union of open subsets of \mathbb{R} is an open set.
4. (a) Define Cauchy sequence. Prove that every Cauchy sequence is bounded. Is the converse true? Justify.
(b) Prove or disprove: The sequence $\left\{x_{n}\right\}$ where $x_{n}=n / 2-[n / 2]$, is convergent, $[x]$ denotes the largest integer not exceeding x.
(c) Prove that if $\lim _{n \rightarrow \infty} x_{n}=l$, then for any $m>0, \lim _{n \rightarrow \infty}\left(m x_{n}\right)=m . l$.
5. (a) Let $f: \mathbb{Q}-\{0\} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2} \sin \frac{1}{x}, \forall x \in \mathbb{Q}-\{0\}$. Does $\lim _{x \rightarrow 0} f(x)$ exist? Justify your answer.
(b) If $\left\{u_{n}\right\}_{n}$ and $\left\{v_{n}\right\}_{n}$ be bounded sequences of real numbers.

Prove that $\overline{\operatorname{Lim}} u_{n}+\overline{\operatorname{Lim}} v_{n} \geqslant \overline{\operatorname{Lim}}\left(u_{n}+v_{n}\right)$.
(c) Prove that every sequence of real numbers has a monotone subsequence.
(d) Prove or disprove: If $\left\{x_{n}\right\}$ is a bounded sequence and $\left\{y_{n}\right\}$ is a convergent sequence then $\left\{x_{n} y_{n}\right\}$ is a convergent sequence.
6. (a) Let $f: D \rightarrow \mathbb{R}(D \subseteq \mathbb{R})$ be a function such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)$, for any sequence $\left\{x_{n}\right\}$ in D converging to $a \in D$. Show that f is continuous at a.
(b) Correct or Justify : There exists a monotonic function defined on $[0,1]$ such that the function is discontinuous at every irrational point in $[0,1]$.
(c) If $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$, prove that f is bounded on $[a, b]$.
(d) Let f, g be two real valued continuous functions of real variable and $f(x)=g(x), \forall x \in \mathbb{Q}$. Show that $f(x)=g(x), \forall x \in \mathbb{R}$. $3+2+3+2$
7. (a) Define Lipschitz function. Show that every Lipschitz function is uniformly continuous.
(b) Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Using Intermediate Value Property of f, show that there exists a point $c \in[0,1]$ such that $f(c)=c^{2}$.
(c) Prove or disprove : A sequence is everywhere continuous.
(d) Prove or disprove : the function $f(x)=x \sin 1 / x, x \neq 0$, is uniformly continuous on $(0,1 / \pi)$.

Group - B

(Marks : 10)

8. Answer any two questions:
(a) If $I_{m, n}=\int \sin ^{m} x \cos ^{n} x d x$, where m, n are positive integers, then prove

$$
I_{m, n}=\frac{\sin ^{m-1} x \cos ^{n-1} x}{m+n}+\frac{n-1}{m+n} I_{m, n-2} .
$$

Hence find a reduction formula for $I_{m, n}=\int_{0}^{\pi / 2} \sin ^{m} x \cos ^{n} x d x$.
(b) Find the value of $\int_{0}^{1} \frac{d x}{(3+4 \cos x)^{2}}$.
(c) Evaluate : $\int \frac{2 x d x}{\left(1-x^{2}\right) \sqrt{x^{4}-1}}$
(d) Reduce $\lim _{n \rightarrow \infty}\left[\frac{1}{n}+\frac{n^{2}}{(n+1)^{3}}+\frac{n^{2}}{(n+2)^{3}}+\ldots . .+\frac{1}{8 n}\right]$ to a definite integral and hence find its value.

