2021

MATHEMATICS — HONOURS

Paper: DSE-A-1

(Industrial Mathematics)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Choose the correct answer with proper justification / explanation for each of the multiple choice question given below (For each question, one mark for each correct answer and one mark for justification):
 - (a) The attenuation coefficient of an X-ray beam measures
 - (i) proportion of the photons absorbed by each millimeter of a substance when an X-ray passes through it.
 - (ii) wavelength of the X-ray.
 - (iii) proportion of the photons which are not absorbed by a substance when an X-ray passes through it.
 - (iv) None of the above.
 - (b) If $l_{t,\theta}$ be the line through the point $(t\cos\theta, t\sin\theta)$ and perpendicular to the unit vector $\hat{n} = (\cos \theta, \sin \theta)$, then $x + y = \sqrt{2}$ is same as

 - (i) $l_{1,\frac{\pi}{2}}$ (ii) $l_{1,\frac{\pi}{4}}$ (iii) $l_{0,\frac{\pi}{2}}$
- (iv) $l_{\sqrt{2},\frac{\pi}{4}}$

- (c) Radon transform of $f = e^{-x^2 y^2}$ is
 - (i) $\sqrt{\pi}e^{-p^2}$ (ii) $\sqrt{\pi}e^{p^2}$ (iii) πe^{-p^2}
- (iv) $\frac{\sqrt{\pi}}{2}e^{-p^2}$
- (d) If f and g be defined and integrable on the real line, the convolution of f and g is defined by

(i)
$$(f * g)(x) = \int_{t=-\infty}^{\infty} f(t)g(x+t)dt$$
 for $x \in \mathbb{R}$

(ii)
$$(f * g)(x) = \int_{t--\infty}^{\infty} f(t)g(x-t)dt$$
 for $x \in \mathbb{R}$

(iii)
$$(f * g)(x) = \int_{t=-\infty}^{\infty} f(t)g(xt)dt$$
 for $x \in \mathbb{R}$

(iv)
$$(f * g)(x) = \int_{t=-\infty}^{\infty} f(t)g(x/t)dt$$
 for $x \in \mathbb{R}$

Please Turn Over

- (e) Algebraic reconstruction techniques (ARTs) are techniques for reconstructing images
 - (i) that have no direct connection to the Radon inversion formula.
 - (ii) that are same as the Radon inversion formula.
 - (iii) that are connected to but not same as the Radon inversion formula.
 - (iv) none of the above
- (f) The Fourier sine transform of $\frac{x}{a^2 + x^2}$, a being a constant, is given by

(i) $2\pi . e^{-ap}$

(ii) $\pi^2 . e^{-ap}$

(iii) $(\pi/2).e^{-ap}$

(iv) $\pi . e^{-ap}$

(g) Let z be a complex number such that |z| = 4 and $arg(z) = 5\pi/6$, then z =

(i) $2\sqrt{3} + 2i$

(ii) $-\sqrt{3} + 2i$

(iii) $2\sqrt{3} - 2i$

(iv) $-2\sqrt{3} + 2i$

(h) The period of the function $f(x) = \sin(2x) + \frac{1}{\cos(3x)}$ is

(i) 6π

(ii) 2π

(iii) π

(iv) none of these

5

(i) The value of the integral $\int_0^\infty x^5 e^{-x^3} dx$ is

(i) 1/3

(ii) 1

(iii) 0

(iv) 2

- (j) If A is a real non-singular symmetric matrix of order n, then
 - (i) A and A^{-1} have same set of eigenvectors.
 - (ii) A and A^{-1} have different set of eigenvectors.
 - (iii) A and A^{-1} have some common eigenvectors except one eigenvector.
 - (iv) none of these.

Unit - I

- 2. Answer any two questions:
 - (a) What do you mean by X-ray Computerized Tomography (CT)? Explain with example.
 - (b) (i) If z is a complex number, then find the minimum value of |z| + |z 1|.

(ii) For any two complex numbers z_1 and z_2 and any real numbers a and b; then show that

$$|(az_1 - bz_2)|^2 + |(bz_1 - az_2)|^2 = (a^2 + b^2)(|z_1|^2 + |z_2|^2)$$
2+3

- (c) Define (in the Hadamard sense) the well-posedness of a mathematical problem. Give an example of an ill-posed problem. 3+2
- (d) Solve the following differential equation: $x \frac{d^2 y}{dx^2} + (x-1) \frac{dy}{dx} y = x^2$.

Unit - II

- 3. Answer any two questions:
 - (a) Direct problem is given by : a continuous function $x : [0, 1] \to R$, compute $y(t) := \int_0^t x(s)ds$, $t \in [0, 1]$. Find its inverse problem.
 - (b) Find the inverse function of the function defined by $f(x) = -x^5$, for $x \in [-1, 1]$. Is the inverse function f^{-1} is continuous at x = 0?
 - (c) Consider the boundary value problem $\frac{d^2u}{dx^2} = f$, u(0) = u(l) = 0, where $f: R \to R$ is a given continuous function. Suppose that the solution u and f are known. Find the length l of the interval.
 - (d) If 5, 2, 2 are eigenvalues of a square matrix A of order 3 having eigenvectors $a \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and
 - $b \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$ associated with 5 and 2 respectively, where $a \neq 0$, $(b, c) \neq (0, 0)$, then find the matrix A.

Unit - III

4. Answer any one question:

(a) An X-ray beam A(x) propagates in a uniform medium which is defined by A(x) = x. Prove that the intensity I(x) of this beam is a Gaussian distribution, with boundary conditions $\lim_{|x| \to \infty} I(x) = 0$. Find the average value of this intensity.

Please Turn Over

 5×1

V(5th Sm.)-Mathematics-H/DSE-A-1/CBCS

(4)

(b) If the intensity of an X-ray light beam is $I(x) = (2x+3)e^{-\frac{dx^2}{2}}$, x > 0, then find the inhomogeneous medium and hence show that it is zero at the point $x = -\frac{3}{4} + \frac{\sqrt{16+9d}}{4\sqrt{d}}$, where d is a positive real constant.

Unit - IV

5. Answer any one question:

5×1

- (a) Show that Radon transform is a linear transform.
- (b) Prove that the line $\mathcal{L}_{1/2, \pi/6}$ has a standard form $x = \frac{\sqrt{3}}{4} \frac{s}{2}$, $y = \frac{1}{4} + \frac{\sqrt{3}}{2}s$, then find the Random transformation of $f(x, y) = \begin{cases} x, & x^2 + y^2 \le 1 \\ 0, & \text{elsewhere} \end{cases}$ at the point $(1/2, \pi/6)$.

6. Answer *any one* question :

5×1

- (a) What are the differences between back projection and Random transformation?
- (b) Find back projection of the Radon transform of a attenuation-coefficient function f.

Unit - VI

7. Answer any two questions:

5×2

- (a) Write a short note on algebraic reconstruction technique on the base of CT scan.
- (b) If f(x) is an absolutely integrable and piecewise continuous function with a point of discontinuity at $x = \alpha$ but $\lim_{x \to \alpha^{-}} f(x)$ and $\lim_{x \to \alpha^{+}} f(x)$ exist, then prove that

$$\mathcal{F}^{-1}(\mathcal{F}f)(\alpha) = \frac{1}{2} \left(\lim_{x \to \alpha^{-}} f(x) + \lim_{x \to \alpha^{+}} f(x) \right)$$

- (c) Show that the inverse Fourier transform of an even function is a real-valued function and the inverse Fourier transform of an odd function is a purely imaginary function.
- (d) Find the inverse Fourier transform of the function $F(w) = \frac{2}{1+w^2}$.