2021

BIOCHEMISTRY - HONOURS

Paper : CC-2

Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Find out the ground state term symbol for fluorine atom and fluoride ion. Which of these you consider to be more stable and why?
(b) On the basis of VSEPR theory, write down the most favoured structure of ClF_{3}. Justify your answer.
(c) What do you mean by coordination number? Mention two factors that influence coordination number.
(d) Define half-life and average-life of a radioactive element. Establish the relation between them.
(e) Write down two applications of radioisotopes in medicine.
(f) Draw the energy profile diagram for an $\mathrm{S}_{\mathrm{N}} 1$ reaction.
(g) How can you prepare $\mathrm{CH}_{3} \mathrm{COOH}$ using a Grignard Reagent?
(h) Explain why dry HCl is used in the formation of acetals.
(i) Write down the products of ozonolysis of $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$.
(j) Write down the names and structures of one purine and one pyrimidine base found in nucleic acids.
2. Answer any two questions :
(a) Define 'lattice energy' of an ionic solid. Draw the Born-Haber cycle for the calculation of Lattice Energy of NaCl .
(b) (i) Distinguish between 'double salts' and 'complex salts' with appropriate illustrations.
(ii) Explain Werner's theory of coordination compounds with suitable examples.
(c) Explain why:
(i) Tropylium bromide gives a precipitate with AgNO_{3} solution.
(ii) Guanidine is a strong mono-acidic base.
(d) (i) Draw the chair and boat conformations of cyclohexane showing all the types of $\mathrm{C}-\mathrm{H}$ bonds. Compare their stability.
(ii) Draw Fischer projection, Newman projection formula of Meso-2,3-dihydroxybutane.
3. Answer any three questions :
(a) (i) Write down the names and draw the structures of the possible isomers of the coordination complex of formula $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$, where en $=$ ethylene diamine.
(ii) On the basis of VBT predict the structure of $\mathrm{SO}_{4}{ }^{2-}, \mathrm{ClF}_{3}, \mathrm{SO}_{2} \mathrm{~F}_{2}$.
(iii) Differentiate between ambidentate and polydentate ligands giving suitable examples of each.

$$
3+3+4
$$

(b) (i) What are the 'Radius Ratio rules'? What information can be obtained from them? What are the limitations of the Radius Ratio rules?
(ii) Define formal charge. Draw the Lewis structure of carbonate ion and calculate the formal charge on each atom.
(c) (i) What do you mean by 'nuclear binding energy' and 'mass defect'?
(ii) State the Radioactive Decay Law and give the physical significance of the decay constant.
(iii) The half-life period of a radioactive isotope is 53300 seconds. Find out the time required in minutes for the element to reduce to 10% of its initial amount.
(d) (i) Compare the basicities of pyrrole and pyridine with justification.
(ii) Compare the rates of nucleophilic addition to $\mathrm{CH}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CHO}, \mathrm{CH}_{3} \mathrm{COCH}_{3}$. Explain your answer.
(iii) Give the product with mechanism for the following reaction :

$$
\mathrm{CH}_{3} \mathrm{COCHO} \xrightarrow{50 \% \mathrm{NaOH} \text { solution }}
$$

(iv) Write the products of Aldol condensation :

$$
\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}+\mathrm{NaOH} \rightarrow
$$

(e) (i) Explain the difference between configuration and conformation.
(ii) Draw the energy diagram of n-butane as a function of rotation about the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond and label the maxima and minima with proper conformations.
(iii) Write down a Fischer projection formula for each enantiomer of 3-methylpent-1-ene and specify the chiral centre of each as R or S . Draw the corresponding flying wedge formula for each enantiomer.
(iv) Write the canonical forms of the following cation and indicate with reason the most contributing one.

(f) (i) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{SEt}$ and $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{SEt}) \mathrm{CH}_{2} \mathrm{OH}$ give the same products when treated with dry HCl . Write the products and explain their formation.
(ii) What is the stereoelectronic requirement of an $\mathrm{S}_{\mathrm{N}} 2$ reaction? Explain why neo-pentyl bromide cannot undergo an $\mathrm{S}_{\mathrm{N}} 2$ displacement.
(iii) How can you carry out the following conversions?

(iv) Write a short note on Friedel-Crafts Reactions. Why is nitrobenzene used as a solvent in Friedel-Crafts alkylation reactions?

