2021

PHYSICS - GENERAL

Paper : DSE-A-2
(Modern Physics)

Full Marks : 65

Candidates are required to give their answers in their own words as far as practicable.
প্রান্তলিখিত সংখ্যাগুলি পূণমান নির্দেশক।

১ ও ২নং প্রশ্ন, ও অন্য যে-কোনো চারটি প্রশ্নের উত্তর দাও।

১। যে-কোনো পাঁচটি প্রক্নের উত্তর দাও:
(ক) র্যালে-জীন ও ভীনের বিকিরণ সূত্রের তুলনায় প্যাাক্কর সূত্রের সুবিধা কি?
(খ) একটি ইলেকট্র্রন 100 V বিভব-পার্থরেরের ভিতর দিয়ে যাত্রা করে। ইলেকট্ট্রনের ডি-ব্রয় তরর্গদৈর্ঘ্য নির্ণয় করো।
(গ) একটি ইলেকট্ট্রন কত গতিতে চললে এটির ভর স্থির ভরের দ্বিগ্গু হবে ? (শূন্য মাধ্যমে আলোর গতিবেগ c $=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$)
(ঘ) লরেঞ্জ ফিটজেরাল্ড দৈর্ঘ্য সংকোচন বলতে কী বোরো ?
(ঙ) কোয়ান্টাম বলবিদ্যায় তরঙ্গ প্যাকেট কী? একে কি নর্মালাইজ করা যায়?
(Б) নর্মালাইজ করো : $\psi(x)=A e^{-\alpha x^{2}},-\infty<x<\infty ; A$ এবং α मूটि ধ्रুবক।
(इ) স্বল্প সুস্থিত অবস্থা কী?
২। যে-কোনো তিনটি প্রশ্নের উত্তর দাও:
(ক) কোয়ান্টাম বলবিদ্যায় প্রোব্যাবিলিটি কারেন্ট ঘনত্বের মান নির্ণয় করো।
(খ) হার্মিশিয়ান সংকারকের সংষ্ঞা দাও। দেখাও যে $\hat{x} \hat{p}_{x}$ হার্মিশিয়ান সংকারক নয়।
(গ) একটি $V(x, t)$ বিভব সম্পন্ন অঞ্চলে শ্রোয়েডিংগার তরস্গ সমীকরণেের দুটি সমাধান $\psi_{1}(x, t)$ ও $\psi_{2}(x, t)$ । দেখাও যে, $\psi=a_{1} \psi_{1}+a_{2} \psi_{2}$ ఆই সমীকরণের একটি সমাধান যেখানে a_{1} ఆ a_{2} যে-কোনো দুটি ঞ্রুবক।
(ঘ) চিত্রসহ একটি হিলিয়াম-নিওন লেসারের কার্যপ্রণালী ব্যাখ্যা করো।
(ঙ) বিশেয আপেক্ষিকতাবাদের তত্ত্রের স্বীকার্যগলি বিবৃত করো। $E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}$ রাশিমালাটি প্রতিষ্ঠা করো যেখানে প্রতীকগুলি স্বাভাবিক অর্থ বহন করে।

৩। (ক) দেখাও যে মুক্ত ইলেকট্রুন দ্বারা বিক্ষিপ্ত হওয়ার কারণেে কোনো ফোটনের তরস্গ দৈর্ঘ্যের পরিবর্তনের মান $\Delta \lambda=\lambda_{c}(1-\cos \theta)$ যেখানে $\lambda_{c}=$ ক্রন্পটন তরপ্দর্থ্য $~ ও ~=~ ব ি ক ্ ষ ে প ণ ~ ক ে া ণ । ~$
(খ) ডেভিসন-গার্মার পরীীক্ষাটি বর্ণনা করো। এর গুরুত্ব কী?

8। (ক) একমাত্রিক বিভব $V(x)$-এর বিচরণশীল একটি কণার শ্রোয়েডিংগার সমীকরণটি লেখো।
(খ) বস্তুতরঙ্গের দশাবেগ ও গুচ্ছ বেগের মট্যে সম্পর্কটি নির্ণয় করো। দেখাও যে বস্তু তরঙ্গের দশা বেগ $=\frac{c^{2}}{v}$ যেখানে $c=$ आলোর গতিবেগ ও $v=$ কণার গতিবেগ।
(গ) হাইজেনবার্গের অনিশ্চয়তা সূত্র ব্যবহার করে দেখাও যে একটি পরমাণুর কেন্দ্রকের ভিতরে ইলেকট্ট্রন উপস্থিত থাকতে পারে ना।
২+(২+২)+৪

৫। (ক) আইনস্টাইনের A ও B গুলাক্কের মব্যে সম্পর্ক নির্ণয় করো।
(খ) লেসার আলোর বৈশিষ্ট্য লেখো।
(গ) রুবি লেসারের কার্যনীতি লেখো।
৬। (ক) $V(x)=\left\{\begin{array}{ll}0, & x<0 \\ V_{0}, & x \geq 0\end{array}\right.$ এই স্টেপ বিভবের জন্য শ্রোয়েডিংগার সমীকরণটি সমাধান করো এবং এর সাহায্যে প্রতিফলন ও সংবহ্ন-এর মান নির্ণয় করো।
(খ) একটি কণা একটি একমাত্রিক শক্ত বাক্সের মধ্যে আবদ্ধ। এর শ্রোয়েডিংগার সমীকরণটি সমাধান করে নর্মালাইজড তরঙ্গ-অপেক্ষকের ব্যঞ্জক নির্ণয় করো।

१। (ক) দেখাও যে শূন্য মাধ্যমে আলোর গতিবেণের সঙ্গে যে-কোনো গতিবেগ যোগ দিলে পুনরায় আলোর গতিবেগই পাওয়া যায়।
(খ) ৭ ‘ক’-তে ব্যবহৃত ফর্মুলাটি প্রমাণ করো।
(গ) লরেঞ্জ রূপান্তর সমীকরণগুলি ব্যবহার করে দৈর্ঘ্য সংকোচন ও সময় প্রসারণের রাশিমালা নির্ণয় করো।
৩+৩+(২+২)

৮। (ক) একটি পর্যবেক্ষণযোগ্য রাশির প্রত্যাশামান $\langle\alpha\rangle=\int \psi^{*} \hat{\alpha} \psi d \tau$ । এটা থেকে দেখাও যে $\hat{\alpha}$ একটি হার্মিশিয়ান সংকারক।
(খ) কৌণিক ভরবেগ সংকারকের রাশি হল $\hat{L}=\hat{r} \times \hat{p}$ । এটা থেকে গোলীয় পোলার স্থানাঙ্কের $\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}$ উপাংশের মান নির্ণয় করো।
(গ) প্রমাণ করো যে, একটি হার্মিশিয়ান সংকারকের আইগেন মান বাস্তব হয়।

[English Version]

The figures in the margin indicate full marks.
Answer question nos. 1 and 2, and any four questions from thre rest.

1. Answer any five questions:
(a) What is the advantage of Planck's law over Rayleigh-Jean and Wien's radiation law?
(b) An electron falls through a potential difference of 100 V . Calculate the de Broglie wavelength of the electron.
(c) At what speed should an electron move to double its rest mass? Given that velocity of light in free spaces $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
(d) What is meant by Lorentz-Fitzerald length contraction?
(e) In quantum mechanics, what is wave packet? Can it be normalised?
(f) Normalise $\psi(x)=A e^{-\alpha x^{2}},-\infty<x<\infty$; where A and α are constants.
(g) What is metastable state?
2. Answer any three questions:
(a) Obtain an expression for probability current density in quantum mechanics.
(b) Define Hermitian operator. Show that the operator $\hat{x} \hat{p}_{x}$ is not an Hermitian operator.
(c) If $\psi_{1}(x, t)$ and $\psi_{2}(x, t)$ are both solutions of Schrödinger wave equation for a given potential $V(x, t)$. Then show that $\psi=a_{1} \psi_{1}+a_{2} \psi_{2}$ in which a_{1} and a_{2} are arbitrary constants is also a solution.
(d) With the diagram, explain the working principle of $\mathrm{He}-\mathrm{Ne}$ Laser.
(e) State the basic postulates of special theory of relativity. Prove that $E^{2}=p^{2} c^{2}+m_{0}^{2} c^{4}$, where the symbols have their usual meaning.
3. (a) Show that the amount of wavelength shift of a photon scattered by a free electron given by, $\Delta \lambda=\lambda_{c}(1-\cos \theta)$, where λ_{c} is Crompton wavelength and θ is the angle of scattering.
(b) Describe Davison-Germar experiment. What is its significance?
4. (a) Write the Schrödinger equation of a particle moving in a one-dimensional potential $V(x)$.
(b) Deduce the relation between phase velocity and group velocity of matter wave. Show that the phase velocity of matter wave $=\frac{c^{2}}{v}$, where c is the velocity of light in free spaces, v is particle velocity.
(c) Using Heisenberg's uncertainty principle, show that an electron cannot reside inside the nucleus of an atom.
5. (a) Deduce the relation between Einstein's A and B coefficient.
(b) Write the properties of LASER.
(c) Write down the working principle of Ruby Laser.
6. (a) $V(x)=\left\{\begin{array}{ll}0, & x<0 \\ V_{0}, & x \geq 0\end{array}\right.$. Solve the Schrödinger equation for the step potential and use it to find the expression for reflectance and transmittance.
(b) A particle is in a one-dimensional ragid box. Solve its Schrödinger equation and normalise the wave function.
7. (a) Prove that if any velocity is added to velocity of light in free space the result is same as the velocity of light in free space.
(b) Deduce the formula used in part 7(a).
(c) Using Lorentz transformation equation, deduce the expression for Length contraction and Time dilation.
$3+3+(2+2)$
8. (a) The expectation value of observable is $\langle\alpha\rangle=\int \psi^{*} \hat{\alpha} \psi d \tau$. From this expression, show that $\hat{\alpha}$ is an Hermitian operator.
(b) Angular momentum operator is given by $\hat{L}=\hat{r} \times \hat{p}$. In spherical polar coordinate, find the components $\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}$.
(c) Prove that the eigenvalues of an Hermitian operator are real.
