2021

MATHEMATICS - GENERAL

Paper : DSE-A-2

(Graph Theory)
Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Choose the correct alternatives:
(a) The number of vertices of a regular graph of degree 3 with 15 edges is
(i) 5
(ii) 10
(iii) 20
(iv) 45 .
(b) Maximum number of edges in a simple connected plane graph of order n is
(i) $2 n-4$
(ii) $3 n-10$
(iii) $3 n-6$
(iv) $3 n$.
(c) Number of vertices of a complete graph having 66 edges is
(i) 10
(ii) 11
(iii) 12
(iv) 13 .
(d) The adjacency matrix of a graph G is always
(i) symmetric
(ii) skew symmetric
(iii) singular
(iv) non-singular.
(e)

G is
(i) bipartite and regular
(ii) bipartite, but non-regular
(iii) regular but non-bipartite
(iv) neither regular nor bipartite.
(f) If $I(G)$ is an incidence matrix of a directed graph G without loops and non-directed edges, then each column of $I(G)$ contains
(i) two 1
(ii) one 1 , one -1
(iii) two -1
(iv) one 1 .
(g) The degree of the root of a binary tree is
(i) 0
(ii) 1
(iii) 2
(iv) 3 .
(h)

In the above graph G, distance between v_{1} and v_{6} is
(i) 0
(ii) 1
(iii) 3
(iv) \propto.
(i)

G is
(i) non-planar and non-Eulerian
(ii) planar and non-Eulerian
(iii) planar and Eulerian
(iv) non-planar and Eulerian.
(j) The minimum number of pendant vertices in a tree with 5 vertices is
(i) 2
(ii) 3
(iii) 0
(iv) 1 .
2. Answer any three questions:
(a) (i) Define incidence matrix of a connected graph.
(ii)

Find incidence matrix of G.
(b) (i) Define isomorphic graphs.

Is $\mathrm{G}_{1} \cong \mathrm{G}_{2}$? Justify.
(c) Show that the following is a planar graph by redrawing it so that no edges cross.

(d) Define complement of a graph. Find the complement of the following graph.

(e) What is a Hamiltonian graph? Is the following graph G Hamiltonian? Justify your answer.

3. Answer any four questions:
(a) (i) What is minimal spanning tree? Find minimal spanning tree of the graph given below :

(ii) Prove that $\mathrm{K}_{3,3}$ is non-planar.
(b) (i) If degree of each vertex of a graph G is greater than or equal to 2 , then show that G contains a cycle.
(ii) If G is a simple graph with at most $2 n$ vertices and degree of each vertex is at least n, then show that G is connected.
(c) (i) Apply Dijkstra's algorithm to determine a shortest path between a to z in the following graph.

(ii) Draw a tree with 5 internal vertices and 5 terminal vertices.
(d) Using Floyd-Warshall algorithm, find the length of the shortest path between any pair of vertices a, b, c, d and e of the following weighted directed graph.

(e) (i) Draw a bipartite graph with degree sequence (1, 3, 4), (1, 2, 2, 3).
(ii) If G is a tree with all odd degree vertices, then show that number of vertices of G is even.
(iii) A tree has only vertices of degree 5 and degree 1 . If the tree has 34 vertices, how many have degree 5 ?
(f) (i) Prove that a complete bipartite graph $K_{m, n}$ is Hamiltonian iff $m=n$.
(ii)

Check if G is Eulerian and Hamiltonian or not.
(g) (i)

Find the faces and degree of each face in G. What is the relation between sum of degrees of faces and number of edges of G ?
(ii) Does there exist a planar graph with 35 vertices and 100 edges?
(iii) Find the maximum number of vertices in a connected graph having 17 edges.

