2022

MATHEMATICS — HONOURS

Paper : CC-8

(Riemann Integration and Series of Functions)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

N, R. Q. Z denote the sets of natural, real, rational numbers and integers respectively.

- Answer the following multiple choice questions having only one correct option. Choose the correct option and justify your choice. (1+1)×10
 - (a) Let $f:[a, b] \to \mathbb{R}$ be a bounded function and P, Q be any two partitions on [a, b]. Then
 - (i) $L(P \cup Q, f) \le L(P, f)$ (ii) $U(P \cap Q, f) \le U(Q, f)$ (iii) $L(P, f) \le U(P \cup Q, f)$ (iv) $U(P, f) \le U(P \cup Q, f)$.
 - (b) Identify the set which is not negligible.
 - (i) **Q**
 - (ii) $\{x\sqrt{2} : x \in \mathbb{Z}\}$
 - (iii) The set of points of discontinuity of a monotone function on \mathbb{R} .
 - (iv) The set of points of discontinuity of the function $f: [0, 1] \rightarrow \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}.$$

- (c) If $f: [a, b] \to \mathbb{R}$ and $g: [a, b] \to \mathbb{R}$ are bounded functions such that $fg: [a, b] \to \mathbb{R}$ is Riemann integrable on [a, b], then
 - (i) both f and g are Riemann integrable on [a, b].
 - (ii) at least one of f and g is Riemann integrable on [a, b].
 - (iii) If f is Riemann integrable on [a, b], then g is Riemann integrable on [a, b].
 - (iv) f and g may not be Riemann integrable on [a, b].

Please Turn Over

(d) f:

$$[-1, 1] \rightarrow \mathbb{R}$$
 is defined by $f(x) = \begin{cases} 0, & -1 \le x < 0 \\ 1, & 0 \le x \le 1 \end{cases}$. Then

- (i) f is Riemann integrable and has primitive on [-1, 1].
- (ii) f is Riemann integrable but does not have primitive on [-1, 1].
- (iii) f is not Riemann integrable but has primitive on [-1, 1]
- (iv) f is not Riemann integrable and also does not have primitive on [-1, 1].

(2)

(e)
$$\int_{1}^{\infty} \frac{x^{n-1}}{x+1} dx \text{ converges for}$$

(i) $n > 1$
(ii) $n < 1$
(iii) $n < 1$
(iv) $n < 0.$
(f)
$$\int_{-\infty}^{\infty} e^{-x^2} dx \text{ is equal to}$$

(i) $\frac{\sqrt{\pi}}{2}$
(ii) $\sqrt{\pi}$
(iii) $\sqrt{\pi}$
(iv) $\sqrt{\frac{\pi}{2}}$.

(g) Let $f_n(x) = x^n$ for each $n \in \mathbb{N}$. Then $\{f_n\}_{n=1}^{\infty}$ is uniformly convergent on

(i) (0, 1)
(ii)
$$\left(\frac{3}{5}, 1\right]$$

(iv) $\left[0, \frac{3}{5}\right]$

(h)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n^3 x^4}$$
 is

- (i) uniformly convergent but not absolutely convergent on \mathbb{R} .
- (ii) uniformly convergent and absolutely convergent on \mathbb{R} .
- (iii) absolutely convergent but not uniformly convergent on R.
- (iv) neither absolutely convergent nor uniformly convergent on R.

- (i) The radius of convergence of $\sum_{n=1}^{\infty} \frac{(2n)! x^n}{(n!)^2}$ is
 - (i) $\frac{1}{2}$ (ii) $\frac{1}{3}$
 - (iii) $\frac{1}{4}$ (iv) $\frac{2}{3}$.
- (j) If $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ is the Fourier series of the function $x \sin x$ in $[-\pi, \pi]$, then identify

the incorrect statement.

- (i) $\sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ converges to xsinx in $[-\pi, \pi]$
- (ii) $\sum_{n} a_n$ is convergent
- (iii) $\sum_{n} n^2 b_n$ is convergent (iv) $a_n \neq 0$ for every $n \in \mathbb{N}$.
- 2. Answer any three questions :
 - (a) Define primitive of a function on [a, b]. Prove that every continuous function on a closed and bounded interval has a primitive there.
 - (b) (i) Define 'negligible set' in R. State the characterization theorem for Riemann integrability in terms of negligible sets.
 - (ii) Discuss the Riemann integrability of the function $f: [-500, 500] \rightarrow \mathbb{R}$ defined by f(x) = 2 [x]. ([x] denotes the largest integer not exceeding x) (1+2)+2
 - (c) (i) Let $f: [0, 1] \to \mathbb{R}$ be defined by $f(x) = \lim_{n \to \infty} (\sin 2x)^n$. Check whether f is Riemann integrable on [0, 1].

(ii) Let f, g be Riemann integrable on [a, b] and
$$\int_{a}^{b} f^{2} = 0$$
. Prove or disprove : $\int_{a}^{b} fg = 0$. 2+3

Please Turn Over

(3)

(d) (i) If $f: \mathbb{R} \to \mathbb{R}$ is Riemann integrable on [0, 1] and $f(x+y) = f(x) + f(y) \ \forall x \in \mathbb{R}$, then show that $\int_{-\infty}^{1} f(x) = \frac{f(2022)}{2}$

that
$$\int_{0}^{} f = \frac{f(2022)}{4044}$$
.

- (ii) Prove or disprove : |f| is Riemann integrable on [a, b] implies f is Riemann integrable on [a, b].
- (e) (i) State Fundamental Theorem of integral calculus.
 - (ii) Let $f: [0, 3] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 0, & 0 \le x \le 1\\ 1, & 1 < x \le 2\\ 2, & 2 < x \le 3 \end{cases}$$

Let $F(x) = \int_{0}^{x} f(t)dt$, $x \in [0,3]$. Find the function F. Examine whether F is continuous on [0, 3].

3. Answer any two questions :

(a) Discuss the convergence of the improper integral
$$\int_{0}^{1} x^{m-1} (1-x)^{n-1} dx.$$
 5

(b) (i) Show that $\int_{1}^{\infty} \frac{\sin x dx}{x^p}$ converges absolutely for p > 1 and conditionally for 0 .

(ii) Show that
$$\int_{0}^{1} \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}, k^2 < 1$$
 is convergent. 3+2

(c) State Abel's Test and use it to test the convergence of $\int_{0}^{\infty} e^{-ax} \frac{\sin x}{x} dx, a \ge 0.$]+4

- (d) (i) Show that $\Gamma(n+1) = n!$ for any $n \in \mathbb{N}$.
 - (ii) Examine the convergence of $\int_{0}^{\infty} \frac{\sin x + 2}{\log x} dx.$ 2+3

(4)

4. Answer any four questions :

(a) Prove that a sequence $\{f_n\}_{n=1}^{\infty}$ of functions $f_n: [a, b] \to \mathbb{R}$ converges uniformly to some function $f: [a, b] \to \mathbb{R}$ if and only if $\lim_{n \to \infty} M_n = 0$ where $M_n = \sup_{x \in [a,b]} |f_n(x) - f(x)|$, for each $n \in \mathbb{N}$. 5

X(4th Sm.)-Mathematics-H/CC-8/CBCS

- (b) Examine the uniform convergence of the sequence $\{g_n\}_{n=1}^{\infty}$ of functions, where for each $n \in \mathbb{N}$, $g_n(x) = nxe^{-nx^2}, x \in [0,1]$ 5
- (c) Discuss the uniform convergence of $\sum_{n=1}^{\infty} n^2 x^2 e^{-n^2 |x|}$ on \mathbb{R} . 5
- (d) Let $D \subseteq \mathbb{R}$ and for each $n \in \mathbb{N}$, let $f_n : D \to \mathbb{R}$ be continuous on D. Then prove that the uniform sum function of $\sum_n f_n$ is continuous on D. Is uniformity a necessary condition for the conclusion to hold? Justify your answer. 3+2
- (e) (i) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n n!}{n^n} x^n.$
 - (ii) Prove or disprove : Radius of convergence of a power series remains invariant under termby-term differentiation.
- (f) State Abel's theorem for uniform convergence of power series. Use it to prove that the sum of the series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ is log 2.
- (g) Obtain the Fourier series of $f: [-\pi, \pi] \to \mathbb{R}$ defined by $f(x) = \begin{cases} -\cos x, & -\pi \le x < 0 \\ \cos x, & 0 \le x \le \pi \end{cases}$.

Hence, find the sum of the series $\frac{2}{1\cdot 3} - \frac{6}{5\cdot 7} + \frac{10}{9\cdot 11} - \dots$ 3+2