2021

PHYSICS—HONOURS

Paper : CC-5

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four from the rest.

1. Answer any five questions:
(a) Find the average value of $\sin x+\sin ^{2} x$ for $0 \leq x \leq 2 \pi$.
(b) Using generating function, show that $p_{l}(-x)=(-1)^{l} p_{l}(x)$, where $P_{l}(x)$ is Legendre polynomial of order l.
(c) Find the solution of the equation $x^{2} \frac{d^{2} y}{d x^{2}}+p x \frac{d y}{d x}+q y=o$, where p and q are constants.
(d) For the Poisson's distribution $P_{n}=\frac{\mu^{\mathrm{n}}}{n!} e^{-\mu}$. Find the standard deviation for the distribution. μ is constant.

> Or, [syllabus 2018-2019]

If the Lagrangian is invariant under a rigid translation, the momentum of the system is conserved.
(e) If $f(x) \rightarrow 0$ for $x \rightarrow \pm \infty$, find the Fourier transform of $\frac{d f}{d x}$.

Or, [syllabus 2018-2019]
Show that if the Hamiltonian is not explicitly time dependent then energy is conserved (assuming Hamiltonian equals energy).
(f) Show that $x=1$ is a regular singular point of the Legendre differential equation.
(g) Show that, for any $p>0, \Gamma(p+1)=p \Gamma(p)$.
2. Consider the function shown in figure

(a) Find its Fourier transform $g(\omega)$. Sketch $g(\omega)$ vs ω.
(b) Show, using Parseval's identity $\int_{0}^{\infty} \frac{\sin ^{2} \omega}{\omega^{2}} d \omega=\frac{\pi}{2}$.
(c) Show that Fourier transform of $f\left(t-t_{0}\right)=e^{-i \omega t_{0}} g(\omega)$.
(d)

Using (a) and (c), find Fourier transform of $h(t)$.
Or, [Syllabus 2018-2019]
(a) Find the path followed by a light ray if the index of refraction in polar coordinate is proportional to r^{-2}.
(b) Find the equation of motion of a particle moving along x-axis under a potential energy $V=\frac{1}{2} k x^{2}$, by constructing the Lagrangian. Construct the Hamiltonian for the system and argue that it is a conservative system.
3. (a) Calculate, using gamma function $\int_{1}^{\infty} \frac{(\ln x)^{3}}{x^{2}(x-1)} d x\left(\right.$ you can assume $\left.\sum_{r=1}^{\infty} \frac{1}{r^{4}}=\frac{\pi^{4}}{90}\right)$.
(b) Prove that for positive integers m and $n, \beta(m, n)=\frac{(n-1)!}{m \cdot(m+1) \ldots(m+n-1)}$.

Hence show that 1.3.5 $\ldots(2 n-1)=\frac{2^{n} \Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi}}$.
4. (a) Given $f(x)=x$ for $0<x<1$, sketch even function corresponding to this function with period 2. Find the Fourier series for this even function.
(b) Using above expansion, find the value of $\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}$.
(c) Sketch the odd function of period 2 corresponding to the above given function.
5. (a) From the generating function of Hermite polynomial $H_{n}(x), e^{2 x t-t^{2}}=\sum_{n=0}^{\infty} \frac{1}{n!} H_{n}(x)$

Show that $H_{n}^{\prime}(x)=2 n H_{n-1}(x)$.
(b) $H_{n}(x)$ are orthogonal polynomials in the domain $-\infty<x<\infty$. Supose $H_{2}(x)=a+b x^{2}$. Find a and b using orthogonality property of $H_{n}(x)$; given $H_{0}(x)=1, H_{1}(x)=2 x$ and coefficient of highest power of x in $H_{n}(x)$ is 2^{n}.
(c) Solve $x^{2} y^{\prime \prime}-6 y=0$ using Frobenius method around $x=0$.
6. (a) For a binomial distribution with n trials, if p is the probability of success and q is that of failure, then show that the mean and variance of the distribution are respectively $n p$ and $n p q$.
(b) Solve $\frac{\partial^{2} y}{\partial x^{2}}=c \frac{\partial y}{\partial t}$ using Fourier transform.
(c) A random variable x has the density function $f(x)=\left\{\begin{array}{cl}c x & 0 \leq x \leq 2 \\ 0 & \text { otherwise }\end{array}\right.$
find (i) the constant c .
(ii) the probability that $x>1$.

Or, [Syllabus 2018-2019]

(a) Derive the Euler-Lagrange equation from the Principle of Least Action. Show clearly how the variation of paths is implemented in your derivation in terms of ordinary partial derivative with respect to a parameter.
(b) A bead slides on a frictionless wire in the shape of a cycloid described by the equations

$$
x=a(\theta-\sin \theta) \quad y=a(1+\cos \theta)
$$

where (x, y) are cartesian coordinates, a is a constant and $0 \leq \theta \leq 2 \pi$. Write down (i) the Lagrangian and (ii) the equation of motion in terms of θ. Indicate the generalized coordinate θ by drawing a figure.
7. (a) The heat equation in 2 dimensional cartesian coordinates is given by $\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}=\frac{1}{K} \frac{\partial T}{\partial \mathrm{t}}$ where T is the temperature function and K is a constant. Solve this equation for steady state using the method of separation of variables.
(b) Find a solution $U(x, t)$ of the boundary-value problem $\frac{\partial U}{\partial t}=3 \frac{\partial^{2} U}{\partial x^{2}} \quad t>0,0<x<2$

The boundary conditions are

$$
\begin{gathered}
U(0, t)=0, U(2, t)=0 \\
U(x, 0)=x \quad 0<x<2 \\
{\left[\text { Given } x=\sum_{n=1}^{\infty}-\frac{4}{n \pi}(1)^{n} \sin \frac{n \pi x}{2} ; 0<x<2\right]}
\end{gathered}
$$

