2022

PHYSICS

Paper : PHY 522

(Advanced Particle Physics)

Full Marks : 50
The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

1. (a) Write down the matrix element \mathcal{M} for muon decay in the low energy limit. Deduce $\overline{|\mathcal{M}|^{2}}$, expressing it as the product to two traces. (Do not evaluate the traces.)
(b) What is the helicity of a neutrino in the Standard Model? Use the helicity argument to conclude that the rate of the decay $\pi_{0} \rightarrow v \bar{v}$ should vanish if the neutrinos are massless.
(c) The sum over polarizations $\sum_{r=1}^{3} \epsilon_{\mu}^{r}(k) \epsilon_{v}^{r^{*}}(k)$ for a vector boson of mass M is of the form $A g_{\mu v}+B k_{\mu v}$. Find A and B, using the transverse condition and the normalization condition of the polarization vectors.
$(1+3)+(1+2)+3$
2. (a) Write down the expression for the covariant derivative in the Standard Model. Obtain the mass of the W boson, given that $\langle\Phi\rangle=\left(0 \frac{v}{\sqrt{2}}\right)^{T}$.
(b) If Φ transforms as an $\mathrm{SU}(2)$ doublet, show that $\tilde{\Phi}=i \tau_{2} \Phi^{*}$ also transforms as an $\mathrm{SU}(2)$ doublet.
(c) In the Standard Model, explain why $\left(\bar{u}_{L} \bar{d}_{L}\right) \Phi u_{R}$ is not $U(1)_{Y}$ invariant.
3. (a) Draw all the tree-level diagrams contributing to $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$. Why can the Higgs mediated diagram be neglected? Define the forward-backward asymmetry in terms of the differential scattering crosssection (no calculation is needed). Which diagram gives rise to the forward-backward asymmetry?
(b) Show that $\Phi(x)=e^{i \zeta^{a}(x) \tau^{a} / v}\left(0 \frac{v+H(x)}{\sqrt{2}}\right)^{T}$ fully parametrizes deviations from $\langle\Phi\rangle=\left(0 \frac{v}{\sqrt{2}}\right)^{T}$ by expanding $\Phi(x)$ to first order in the fields.

S(4th Sm.)-Physics/PHY522(Advanced Particle Physics) (2)

(c) Draw the lowest order diagrams for the decay of the Higgs into two gluons and into four charged
leptons.
(d) Draw all the tree-level diagrams for $q \bar{q} \rightarrow G G .(G$ denotes a gluon.) $\quad(1+1+1+1)+2+(1+1)+2$
4. The formula for the differential scattering cross-section is :

$$
d \sigma=\frac{1}{4 \sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}}\left(\prod_{a} \frac{d^{3} p_{a}^{\prime}}{(2 \pi)^{3} 2 E_{a}^{\prime}}\right) \times(2 \pi)^{4} \delta^{4}\left(p_{1}+p_{2}-\sum_{a} p_{a}^{\prime}\right)|\mathcal{M}|^{2}
$$

(a) Under what condition(s) can one write the initial state factor as $\sqrt{\left(p_{1} \cdot p_{2}\right)^{2}-m_{1}^{2} m_{2}^{2}}=E_{1} E_{2}\left|\vec{v}_{1}-\vec{v}_{2}\right|$ in standard notations?
(b) Argue that the Dirac delta function appearing in the formula is Lorentz invariant. the following interactions in the Lagrangian :
where X_{μ} is a spin-1 particle. Draw the simplest $\bar{c} \gamma^{\mu} a X_{\mu}+\bar{d} \gamma^{\mu} b X_{\mu}$,
for \mathcal{M} assuming X to be very heavy compared to all other the process, and write the expression
5. Consider processes of the form $e+p \rightarrow v_{e}+X$, where X is argies and masses. $3+2+(2+3)$
(a) Give an example of such a process if X consists X is arbitrary.
(b) If this case (i.e., only one particle in particle.
minimum kinetic energy of the electron that will be necessary frome of the proton, find the (No numberical work is necessary. Write everything in terms of masses for initiating the process. the neutrino mass to be zero.)
(c) Give an example of such a process if X consists of two particles.
(d) Which electroweak gauge boson will be responsible for mediating such processes?
6. (a) Distinguish between the quark mass and flavour bases. How are the quark $2+5+2+1$ mass basis related to those in the flavour basis? Derive an expression for the Cabibbo-Kobay mashi-
Maskawa matrix in terms of the above. Maskawa matrix in terms of the above.
For mesons involving the b-quark there are two different neutral meson
(b) For mesons involving the b-quark there are two different neutral meson systems. Identify them
giving their quark structure. What is the advantage of the $\Upsilon(4 S)$ in studying neutral What is the strategy behind an asymmetric B-factory?
For a two-neutrino system, derive the probability of neutrino oscillation B-mesons?
$(1+2+3)+(1+1+2)$
7. (a) For a two-neutrino system, derive the probability of neutrino oscillation to a different flavour and
(b) What are the interactions of neutrinos when they pass through matter and how do they affeet
neutrino mass? For a two neutrino system $-v_{e}$ and v_{μ}-derive the impact of this effeet on

