## 2021

## CHEMISTRY - HONOURS

Paper : DSE-A-2
(Applications of Computers in Chemistry)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any eight questions from the rest.

1. Answer any ten questions:
$1 \times 10$
(a) Assuming mixed mode expressions, find the value of the expressions:
(i) $2 * 6 / 5$
(ii) $7 . /(4 * 2$.
(b) Write logical expression to express the following condition :

X is greater than 20 or is equal to 5 .
(c) Locate error in the following IF-THEN construct :

```
If (a > b) PRINT*, 'a>b'
    END IF
```

(d) Correct the following invalid logical statement:

IF ( $I==J$ ) THEN
$P=Q+R$
IF (K==M) THEN
$S=V+T$
(e) State TRUE or FALSE:
(i) .NOT. is a binary logical operator in FORTRAN.
(ii) .NEQV. is a binary logical operator in FORTRAN.
(f) If $\mathrm{a}=15.0, \mathrm{c}=6.0, \mathrm{~d}=4.0, \mathrm{x}=3.0$ and $\mathrm{y}=4.0$, evaluate the following as TRUE or FALSE :

$$
a-5.5>=9.5 \text {.OR. } c<d \text {.AND. } x>=y
$$

(g) Formulas in Excel always begins with $\qquad$ sign.
(h) What is the syntax in Excel for finding the cumulative distribution function using standard normal distribution?
(i) What are Type - I and Type - II error in Hypothesis testing?
(j) When do you need to include subprogram in your program?
(k) In F -statistics, $\mathrm{F}=\mathrm{s}_{1}{ }^{2} / \mathrm{s}_{2}{ }^{2}$, where the terms have their usual significance. What is the relation between $\mathrm{s}_{1}$ and $\mathrm{s}_{2}$.
(l) How will the nature of normal distribution change if we increase standard deviation keeping mean constant?
2. (a) The following are mathematical expressions and corresponding incorrect FORTRAN expressions. Write the correct FORTRAN expressions :
(i) $\left(\frac{a}{b+c}\right)^{2} \mathrm{~A} /(\mathrm{B}+\mathrm{C}) * * 2$
(ii) $\left(\frac{x}{y}\right)^{n+1}(\mathrm{X} / \mathrm{Y})^{* *} \mathrm{~N}+1$
(iii) $\sqrt{\left(\frac{a^{2}}{b+c}\right)} \operatorname{SQRT}(\mathrm{A} * * 2 /(\mathrm{B}+\mathrm{C})$
(b) Use built-in or Library FUNCTION in the following translation into FORTRAN :
(i) $\frac{\sin x}{|y|+\cos z}$
(ii) $\frac{e^{x+y}}{x+y}$
3. (a) Suppose $\mathrm{A}, \mathrm{B}, \mathrm{J}$ and K contain the following values: $\mathrm{A}=2.7, \mathrm{~B}=3.5, \mathrm{~J}=3$ and $\mathrm{K}=-2$. Find the values of X and L after each pair of statements :
(i) $\mathrm{X}=\mathrm{A}+\mathrm{J} * \mathrm{~K}^{* *} 2+\mathrm{B}$
$\mathrm{L}=\mathrm{A}+\mathrm{J} * \mathrm{~K} * * 2+\mathrm{B}$
(ii) $\mathrm{X}=\mathrm{ABS}(\mathrm{A}-\mathrm{J} * \mathrm{~B}) / 5$
$\mathrm{L}=\mathrm{ABS}(\mathrm{A}-\mathrm{J} * \mathrm{~B}) / 5$
(b) Suppose A and B have the following values: $\mathrm{A}=2.5$ and $\mathrm{B}=3.5$. Find the values of A and B as a result of the following program segments :
(i) $\mathrm{A}=\mathrm{B}$
$\mathrm{B}=\mathrm{A}$
(ii) $\mathrm{T}=\mathrm{A}$
$A=B$
$B=T$
4. How can you determine the concentration of species in an aqueous solution containing $0.010 \mathrm{~mole}^{\mathrm{NH}_{3}}$ in 1.000 L using the Solver function of Microsoft Excel. Give stepwise procedure. Given;
The binary equilibrium is,

$$
\begin{align*}
& \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}, \mathrm{K}_{\mathrm{b}}=1.75 \times 10^{-5} \text { at } 298 \mathrm{~K} \\
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-}, \mathrm{K}_{\mathrm{w}}=1.00 \times 10^{-14} \text { at } 298 \mathrm{~K} \tag{5}
\end{align*}
$$

5. (a) What is Excel's NORM.DIST () function. Write down the syntax of this function including arguments. How is it different from NORM.S.DIST ( ) function?
(b) Calculate the values of PDF and CDF when $x=33$ for normally distributed data with mean $=35$ and standard deviation $=2$.
$3+2$
6. In a titration of a weak acid, let ' $x$ ' denotes the volume of the base and ' $y$ ' the second derivate of the volume of the acid with respect to pH . Then in the vicinity of $y=0$ (the equivalence point), ' $y$ ' should be a linear function of ' $x$ '. Now for the following 10 experimental data, give the stepwise procedure (Excel) for determination of $95 \%$ confidence limit for the equivalent volume of base.

| $x, \mathrm{ml} \rightarrow 30.64$ | 30.68 | 30.75 | $30 \cdot 79$ | $30 \cdot 82$ | 30.89 | 30.96 | 31.00 | 31.07 | $31 \cdot 13$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y, \mathrm{ml} \rightarrow-1.486$ | -1.137 | -0.781 | -0.262 | -0.180 | 0.080 | 0.383 | 0.393 | 0.623 | 1.202 |

Given : $t_{0.95,8}=2 \cdot 306$
$\mathrm{M}=$ infinity because $y=0$ is a theoretical point.
7. The CdSe content $(\mathrm{g} / \mathrm{L})$ of six different samples of nanocrystals was measured by 2 different methods. Check whether the two methods differ significantly at the $95 \%$ confidence level or, not. Provide the step by step excel procedure. (Given : $t_{0.95,5}=2.57$ )

| Sample | Method 1 (Anodic Stripping) | Method 2 (Atomic Absorption) |
| :---: | :---: | :---: |
| A | 0.88 | 0.83 |
| B | 1.15 | 1.04 |
| C | 1.22 | 1.39 |
| D | 0.93 | 0.91 |
| E | 1.17 | 1.08 |
| F | 1.51 | 1.31 |

8. A certain steel is graded according to the results of three tests. The tests are :
(a) Carbon content $<0.7 \%$
(b) Rockwell hardness > 50
(c) Tensile strength $>30,000$ kilos $/ \mathrm{cm}$

The steel is graded 10 if it passes all three tests, 9 if it passes only tests 1 and 2,8 if it passes only test 1 , and 7 if it passes none of the tests. Obtain a flowchart corresponding to this statement of the problem. Write a FORTRAN program corresponding to this flowchart.
9. You are required to find a polynomial fit of the type $y=a x^{2}+b x+c$ for a set of data $\left(x_{i}, y_{i}\right)$. For this purpose, find the following :
(a) sum of squared residuals
(b) conditions to be obeyed by the best fit line
(c) using the above conditions we arrive at three equations

$$
\begin{aligned}
a \sum x_{i}^{4}+b \sum x_{i}^{3}+c \sum x_{i}^{2} & =\sum x_{i}^{2} y_{i} \\
a \sum x_{i}^{3}+b \sum x_{i}^{2}+c \sum x_{i} & =\sum x_{i} y_{i} \\
a \sum x_{i}^{2}+b \sum x_{i}+n c & =\sum y_{i}
\end{aligned}
$$

Arrange these equations in matrix form and write down the step by step EXCEL procedure for finding out $a, b$ and $c$.
10. (a) Write a FORTRAN program to read two one-dimensional arrays of integers and print a third array which is the union of the two arrays and the intersection of the arrays.
(b) Write a FORTRAN program to find the sum of squares of elements on the diagonal of a square matrix.
11. Using Trapezoidal rule in Microsoft Excel, evaluate the definite integral $\int_{1}^{2} \frac{d x}{1+x}$. What will be the value of the same integral using Simpson's $\frac{1}{3}$ rd rule? Using five point calculation for both cases, determine different Excel quantities using calculator.
12. (a) The force $f$ due to gravity between two bodies of masses $m_{1}, m_{2}$ is given by

$$
f=\mathrm{G} m_{1} m_{2} / r^{2}
$$

where $\mathrm{G}=6.673 \mathrm{E}-11, r$ is the real distance (in meters) between the two bodies and $m_{1}$ and $m_{2}$ are in kg . Write a REAL function in FORTRAN to evaluate $f$. $G$ should be defined as a parameter.
(b) Write a FORTRAN function which calculates and returns the distance between any two points whose coordinates are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$.
13. (a) Write a FORTRAN program to check whether 2 matrix commute with each other, i.e., whether $\mathrm{AB}=\mathrm{BA}$ or not.
(b) What does the following program segment execute?

$$
\begin{aligned}
& \mathrm{T}=\mathrm{A}(1) \\
& \mathrm{DO} 100 \mathrm{~K}=1, \mathrm{~N}-1 \\
& \mathrm{~A}(\mathrm{~K})=\mathrm{A}(\mathrm{~K}+1) \\
& \mathrm{A}(\mathrm{~K}+1)=\mathrm{T}
\end{aligned}
$$

100 CONTINUE

$$
\mathrm{A}(\mathrm{~N})=\mathrm{T}
$$

