2021

MATHEMATICS - GENERAL

Third Paper

Full Marks : 100
Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।
মডিউল - V
(মাन : ৫०)
বিভাগ - ক
(মान : २०)

১নং প্রশ্ন এবং অপর যে-কোনো দুটি প্রশ্নের উত্তর দাও।
১। यে-কোনো দুটি প্রণ্নের উত্তর দাও :
(ক) 32.1795 এবং 0.009123450001 সংখ্যাদুটির আসন্যমান পাচটটি সার্থক অঙ্ক পর্যন্ত নির্ণয় করো।
(খ) $\frac{3}{7}$-এর आসন্নমান 0.4286 ধরলেল, শ खতকরা ত্রংটির মান निর্ণয় করো।
(গ) $h=1$ ধরে $\quad \Delta^{3}(1-a x)\left(1-a x^{2}\right)-এ র$ মান নিৰ্ণয় করো।
(ঘ) নিউটনেের পশা|দসারী অন্তঃমান সূত্রটি বিবৃত করো।
২। (ক) নিম্নলিথিত সারণি থেকে পার্থক্য সারণিটি (difference table) তৈরি করো এবং Newton-এর Backward formula-র সাহায্যে $f(21)-এ র$ মান নির্ণয় করো :

x	0	5	10	15	20
$f(x)$	$1 \cdot 0$	$1 \cdot 6$	$3 \cdot 8$	$8 \cdot 2$	$15 \cdot 4$

(খ) যে শ্রেণির দ্বিতীয় এবং পরবর্তী পদগলি $15,10,7,6,7,10$ হয়, সেই শ্রেণিটির প্রথম পদ নির্ণয় করো। (২+৩)+৩
৩। (ক) পাচটি সমান অন্তরের (equal intervals) সাহায্যে $\int_{0}^{1} \cos x d x$-এর মান নির্ণয় করো। তোমার পছন্দের integration formula-টি ব্যবহরেরে কারণ বিবৃত করো।
(খ) Simpson's One-third Rule-এর জ্যামিতিক তাৎপর্য লেখো।

8। (ক) সমদ্বিখণ্ডন সূত্র প্রয়োগ করে $x^{3}-4 x-9=0$ সমীকরণটির 2 এবং 3-এর মধ্যে অবস্থিত একটি বীজের মান তিনটি সার্থক অঙ্ক পর্যন্ত নির্ণয় করো।
(খ) $x^{3}-7 x^{2}-6 x-8=0$ সমীকরণটির একটি বাস্তব ধনাত্যক বীজ আছে এমন এক দৈর্ঘ্য বিশিষ্ট একটি অন্তরাল নির্ণয় করো। ৬+২

৫। নিউটন-র্যাফসন পদ্ধতির সাহায্যে $x^{3}-8 x+4=0$ সমীকরণটির নির্ভুল চার দশমিক স্থান পর্যন্ত বাস্তব বীজের মান নির্ণয় করো। এই পদ্ধতির জ্যামিতিক তাৎপর্য উল্লেখ করো।

৬। যে-কোনো তিনটি প্রত্নের উত্তর দাও :
(ক) নিম্নলিখিত সমীকরণদ্বয়ের ক্ষেত্রে, $x_{1}=2, x_{2}=3, x_{3}=0$ সমাধানটি একটি মৌল সমাধান কিনা পরীক্ষা করো :

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}-7 x_{3}=21 \\
& 6 x_{1}+10 x_{2}+3 x_{3}=42
\end{aligned}
$$

(খ) नিম্নলিখিত ররখিক প্রোগ্রামবিধির কার্যকর দেশ লেখচিত্রের সাহায্যে নির্দেশ করো :

$$
\begin{aligned}
\text { চরম } & z=x_{1}+3 x_{2} \\
\text { যেখানে, } & x_{1}-x_{2} \leq 1 \\
& x_{1}+x_{2} \geq 3 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(গ) দেখাও যে $S=\{x:|x| \leq 3\}$ সেটটি ইউক্লিডিয়ান দেশ $E^{1}-এ$ একটি উত্তল সেট।
(ঘ) নিচন্নে প্রদত্ত উত্তল সেটগুলির প্রান্তিক বিন্দুগুলি নির্ণয় করো (ছায়া অংশ) :

(i)

(ii)
(ঙ) নিক্নের Transportation সমস্যাটির North-West corner নিয়ম প্রতয়োগ করে একটি প্রাথমিক মৌলিক কার্यকর সমাধান বের করো :

$\begin{array}{lllll}D_{1} & D_{2} & D_{3} & D_{4}\end{array}$					মোট যোগান16
O_{1}	4	6	9	5	
O_{2}	4	2	7	1	14
O_{3}	2	5	2	8	10
মোট চাহিদা	12	7	6	15	

१। (ক) একজন উৎপাদনকারী দুই প্রকারের মডেল- A এবং B উৎপাদন করে। প্রতিটি A মডেল তৈরি করতে 4 ঘন্টা ধার দিতে এবং 2 घন্টা পালিশ করতে প্রয়োজন। প্রতিটি B মডেল-এর জন্য 2 ঘন্টা ধার দিতে এবং 5 ঘন্টা পালিশ করা প্রয়োজন। উৎপাদনকারীর $2 ট ি$ ধার দেওয়ার মেশিন এবং 3টি পালিশ মেশিন আছে। প্রতিটি ধার দেওয়ার মেশিন প্রতি সপ্তাহে 40 ঘন্টা কাজ করতে পারে এবং প্রতিটি পালিশ মেশিন প্রতি সপ্তাহে 60 ঘন্টা কাজ করতে পারে। প্রতিটি A মডেল-এ 3 টাকা লাভ রাখা যায় এবং প্রতিটি B মডেল-এ 4 টাকা লাভ রাখা যায়। প্রত্যেক সপ্তাহে যে পরিমাণ মডেল উৎপন্ন হয়, তার সবটাই বিক্রি করা হয়। প্রতি সপ্তাহে দুই প্রকার মডেল-এর উৎপাদন সাপেক্ষে সর্বোচচ লাভের জন্য এই সমস্যাটিকে একটি রেখিক প্রোগ্রামবিধি সমস্যা হিসাবে উপস্থাপিত করো।
(খ) নিম্নলিখিত সমীকরণদ্বয়ের $x_{1}=2, x_{2}=3, x_{3}=2$ এই কার্যকর সমাধানটিকে একটি মৌলিক কার্যকর সমাধান-এ পরিণত করো :

$$
\begin{aligned}
& x_{1}+x_{2}+2 x_{3}=9 \\
& 3 x_{1}+2 x_{2}+5 x_{3}=22
\end{aligned}
$$

৬+৬

৮। (ক) লেখচিত্রের সাহায্যে নিম্নলিখিত রৈখিক প্রোগ্রাম সমস্যাটির সমাধান করো :

$$
\begin{aligned}
\text { চরম } & z=4 x_{1}+7 x_{2} \\
\text { যেখানে, } & 12 x_{1}+7 x_{2} \leq 42 \\
& 5 x_{1}+4 x_{2} \leq 20 \\
& 2 x_{1}+3 x_{2} \geq 6 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

(খ) Charnes’ M পদ্ধতির সাহায্যে নিম্নলিখিত রৈখিক প্রোগ্রাম সমস্যাটির সমাধান করো :

$$
\begin{aligned}
\text { অবম } & z=x_{1}+x_{2} \\
\text { যেখানে, } & 2 x_{1}+x_{2} \geq 4 \\
& x_{1}+7 x_{2} \geq 7 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

৯। (ক) নিম্নলিখিত পরিবহন সমস্যাটির সর্বোত্তম সমাধান এবং সংশ্লিষ্ট পরিবহনন ব্যয় নির্ণয় করো :

O_{1}	D	D_{2}	D_{3}	D_{4}	8
	6	4	2	7	
O_{2}	5	1	4	6	14
O_{3}	6	5	2	5	19
O_{4}	4	3	2	1	11
	7	13	12	10	

(খ) প্রমাণ করো যে সেট $S=\left\{(x, y) \in E^{2}:|x| \leq 2,|y| \leq 1\right\}$ একটি উত্তল (convex) সেট।

১০। (ক) নিম্नলিখিত মুনাফা ম্যাট্রিক্স (Profit Matrix) থেকে সর্বোত্তম আরোপ (Optimal Assignments) নির্ণয় করের।।

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
O_{1}	2	4	3	5	4
O_{2}	7	4	6	8	4
O_{3}	2	9	8	10	4
O_{4}	8	6	12	7	4
O_{5}	2	8	5	8	8

(খ) দেখাও যে $x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=0$ নिम्नলিখিত সমীকরণ দুটির একটি কার্यকর সমাধান :

$$
\begin{aligned}
& x_{1}+2 x_{2}+4 x_{3}+x_{4}=7 \\
& 2 x_{1}-x_{2}+3 x_{3}-2 x_{4}=4
\end{aligned}
$$

প্রাপ্ত কার্যকর সমাধানটিকে একটি মৌল কার্यকর সমাধানে পরিণত করো।

মডিউল - VI
 (বিভাগ-ক অথবা বিভাগ-খ উত্তর দাঔ)
 বিভাগ - ক

 [Analytical Dynamics]

 [Analytical Dynamics]}
(মাन : ৫०)
১১নং প্রশ্ন ও যে-কোনো পাঁচটি প্রশের উত্তর দাও।

১১। যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও :
২×৫
(ক) একটি কণা, $v^{2}=2-x-x^{2}$ গতিসূত্র মেনে একটি সরলরেখায় চলমান। দেখাও যে কণাটি সরল দোলন গতি সম্পন্ন।
(খ) নিউটনের দ্বিতীয় গতিসূত্রটি বিবৃত করো।
(গ) y-অক্ষের সমান্তরাল বলের সূত্রটি নির্ণয় করো যেখানে একটি কণা সমতল $x y=a^{2}$ পথে গতিশীল, a একটি ধ্রুবক।
(ঘ) একটি বস্তুকণা $p^{2}=a r$ অধিবৃত্তাকার পথে এইরূপ বলের অধীনে গতিশীল যা সর্বদাই নাভি মুখী (focus)। বনেের সূত্রটি নির্ণয় করো।
(ঙ) কোনো একটি বস্তু h উচ্চতা থেকে পড়ার সময় কত উচ্চতায় বস্তুটির গতিশক্তি স্থিতশক্তির অর্ধেক হবে?
(চ) রৈখিক ভরবেগের নিত্যতার সূত্রটি বিবৃত করো।
(ছ) বলের ঘাত কী? ক্রমাগত বল (Continuous force) এবং ঘাত বলের (Impulsive force) পার্থক্য কী?
(জ) দেখাও যে কেন্দ্রীয় কক্ষপথের apse-এ যে-কোনো বস্তু ব্যাসার্ধ ডেক্টরের (Radius vector) সাথে লম্বভাবে বিচরণ করে।
(ঝ) প্রমাণ করো গ্রহের শুধুমাত্র অরীয় দিকেইই ত্বরণ থাকে।

১২। m ভরের একটি বস্তু P-কে লম্বভাবে V গতিবেগসহ উপরের দিকে নিক্কেপ করা হল। যদি বায়ুর বাধা $m k v$ হয় তাহলে দেখাও যে P आবার শুরুর বিनদুতে U বেগে ফিরে আসবে যেখানে $g-k U=(g+k V) e^{-k(U+V) / g}$ ।

১৩। O বিन্দুর সাপেক্ষে একটি সরল দোলন গতিসন্পন্ন একটি কণা যার amplitude হল ' a '। কণাটি O বিन্দু থেকে $\frac{\sqrt{3}}{2} a$ দূরত্বে থাকাকালীন ওর গতির অভিমুখে একটি ধাক্কা খাওয়ায় এর গতিবেগ পাঁচগণ বেড়ে যায়। প্রমাণ করো যে কণাটি এখনও সরলল দে|লন গতি সম্পন্ন যার amplitude $\sqrt{7} a$ ।
>8। একটি কণা প্রতি একক ভরে F কেক্দ্রীয় আকর্যক বলের প্রভাবে সমতলে চলে। প্রচলিত অর্থে ব্যবহৃত প্রতীক ধরে দেখাও যে গতিপথের অবকলজ সমীকরণ হল $\frac{h^{2}}{p^{3}} \frac{d p}{d r}=F$ ।

১৫। সমতত্লে বত্রুরেখায় গতিশীল একটি কণার গতিরেগ ও ত্বরণের অরীীয় (radial) ও লম্ব অরীয় (cross radial) উপাশশগুলি নিণ্ণয় করো।

১৬। একটি কণা কেন্দ্রীয় বল $m \mu\left\{3 a u^{4}-2\left(a^{2}-b^{2}\right) u^{5}\right\}, a>b$-এর অধীনে সমতजলে গতিশীল এবং কণাটিকে $a+b$ দূরত্বে apse থেকে $\frac{\sqrt{\mu}}{a+b}$ গতিবেগে উৎক্ষেপ করা হয়েডে। প্রমাণ করো যেে কণাটির গতিপথ $r=a+b \cos \theta$ ।

১৭। একটি বস্তুকণা $y=\frac{c\left(e^{x / 2}+e^{-x / 2}\right)}{2}$ বক্রুরেখায় গতিশীল y-অক্ষের সমাত্তরাল বলের প্রভাবে। বলের সূত্রটি নিিণ়্ করো। b-

১৮। কোনো কণা $r^{4}=a^{4} \cos 4 \theta$ পてে এমন একটি বলের অধীনে গতিশীল যা সর্বদাই মেরু অভিমুখী। বলের সূত্রটি নির্ণয় করো। b

১৯। দুটি বস্তু $3 m$ এবং m ভরের, যা একটি দড়ির সাহয্যে যুক্ত, দড়িটি একটি পুলির উপর দিয়ে রয়েছে। এই সমষ্ঠটা স্থির অবস্থায় রয়েছে বেখানে $3 m$ ভরযুক্ত বস্তুটি মাটিতে রয়েছে। h উচ্চতা থেকে m ভরের একটি তৃতীয় বস্তু দ্বিতীয় ভরের উপর আঘাত করে নিজের সাথে যুক্ত করে সমস্ত সিস্টেমকে গতি প্রদান করে। প্রমাণ করো যে $3 m$ ভরযুক্ত বস্তুটি $\frac{1}{5} h$ উচ্চতায় উঠতে সক্ষম হরে। b

২০। यদি V_{1} এবং V_{2} একটি গ্রহের ররখিক বেগ হয় যখন গ্রহটির সূর্য থেকে দূরত্ব সর্বনিম্ন এবং সর্বোচ্চ, তবে প্রমাণ করো যো $(1-e) V_{1}=(1+e) V_{2}$, যেখানে e হল গ্রহটির কক্ষপতের উৎকেন্দ্রত।

বিভাগ - খ

[Probability and Statistics]

(মান : ৫०)

১১নং প্রশ্ন ও যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও।

১১। যে-কোনো পাঁচটি প্রক্নের উত্তর দাও:
(ক) $P(A B)$ निर्ণয় করেরা, যেখানে $P(A)=\frac{1}{3}, P(B / A)=\frac{1}{2}$ ।
(খ) যে-কোনো দুটি ঘটনা A ও B-এর জন্য প্রমাণ করো : $P(A+B) \geq P(A)+P(B)-1$
(গ) নিম্নলিথিত রাশিগুলির গড়মান ও মধ্যমা নির্ণয় করো ঃ
$21,1,30,91,50,80,11,61,80,12,51,80$
(ঘ) বে-কোনো দুটি ঘট্না A ও B-এর জন্যা প্রমাণ করো যে- $\frac{1+P(A B)-P(A)-P(B)}{1-P(B)}=P(\bar{A} / \bar{B})$, বেখানে $P(B) \neq 1$ ।
(ঙ) Baye's উপপাদ্যটি বিবৃত করো।
(Б) উদাহরণ সহযোগে নমুনাক্কের সংজ্ঞা দাও।
(ছ) यদি x-এর y-এর উপরে এবং y-এর x-এর উপরে নির্ভর রেখাদ্বয়ের (Regression lines) সমীকরণ যথাক্রন্মে $x=4 y+5$ ও $y=5 x+4$ হয়, তবে x ও y-এর সহগাঙ্ক নির্ণয় করো।
(জ) Wholesale Price Index Number বলতে कী বোঝোে ?
(ঝ) মুখ্য প্রকল্প (Null Hypothesis) ও বৈকল্পিক প্রকল্প (Alternative Hypothesis)-এর সং区্ঞা দাও।
১२। (ক) তিनটি ঘট্না A, B, C-এর জন্য প্রমাণ করো : $P(A B C)=P(A) \cdot P(B / A) \cdot P(C / A B)$ ।
(খ) একটি পরিবারে দুটি শিশু বর্তমান। তাদের (অ) দুজনেই ছেলে হওয়ার (আ) দুজনের একই জন্মতারিখ হওয়ার সন্ভাবনা নির্ণয় করো।
8+(২+২)

১৩। (ক) X একটি Binomial $(10, P)$ চলক যার $4 P(x=4)=P(x=3) । P(x=9)$-এর মান নির্ণয় করো।
(খ) निম্নলিথিত তথ্য থেকে X ও Y-এর সহগাঙ্ক নির্ণয় করো :

X	23	25	35	30	20	27	28	24	32
Y	33	35	45	40	30	37	38	34	42

38। (ক) यদি cotton thread-এর breaking strength পরিমাপের 100 নমুনার ক্কেত্রে গড়মান (mean) $7 \cdot 4$ ও standard deviation 1.2 gms হয়, এবং $\mathrm{Z}_{.025}=1.96$ হয় তবে গড় (mean) breaking strength-এর 95% confidence limits নির্ণয় করো।
(খ) তিন-বর্ধীয় গতিশীল গড় পদ্ধতিতে নিম্নপ্রদত্ত তথ্য হতে Kolkata-র বৃষ্ধিপাতের Trend নির্ণয় করো :

বৎসর	2014	2015	2016	2017	2018	2019
বৃষ্টিপাত (मिমি)	506	780	720	580	660	700

১৫। (ক) Paasche's formula দ্বারা প্রদত্ত তথ্য হতে মূল্য সূচক সংখ্যা নির্ণয় করো :

পণ্যদ্রব্য	ভিত্তি বৎসর		বর্তমান বৎসর	
	দর (টাকায়)	মাপ	দর (টাকায়)	মাপ
A	350	18	370	22
B	150	12	200	20
C	280	24	320	30

(খ) মূল্য সূচক সংখ্যার কোন ফর্মূলা factor reversal test-কে satisfy করে? শৃফ্খল সূচক (chain index)-এর দুটি সুবিধা লেঢো। 8+(২+২)

১৬। (ক) একটি সম্ভাব্য সন্তত চলক X-এর নিবেশনের সন্ভাবনা ঘনত্ব p.d.f অ大েক্ষক $f(x)= \begin{cases}\frac{C x}{2021}(1-x), & 0 \leq x \leq 1 \\ 0, & \text { অन্যু }\end{cases}$ ঞ্রুবক C-এর মান এবং var $(1-21 x)$-এর মান নির্ণয় করো।
(খ) নিম্নলিখিত বন্টনের একটি আয়ততলেখ তৈরি করো :

বিদ্যৎ ব্যবহার (watt)	$0-35$	$36-75$	$76-125$	$126-200$	$201-250$	$251-350$	$350-450$
উপভোক্তার সংখ্যা	130	150	120	110	80	70	50

৫+৩

১१। (ক) শর্তধীী সম্ভাবনায় Baye’s-এর উপপাদ্যটি প্রমাণ করো।
(খ) দুটি বাক্স A ও B-এর মধ্যে যथাক্রন্মে 5 টি লাল, 7 টি সাদা বল এবং $6 ট ি$ লাল ও $6 ট ি$ সাদা বল ছিল। Randomly একটি বাক্স তুলেে সেটা থেকে একটি বল তোলা হল। বলটির রং লাল হলে A বাক্সটি থেকে এটি তোলার সম্ভাবনা কত? ৩+৫
১৮। (ক) 15 आকারের একটি দ্বিতল নমুনা থেকে নিস্নলিशিত ফলগুলি পাওয়া গেল ঃ

$$
\bar{x}=7, \bar{y}=11, s_{x}=4, s_{y}=4 \text { এবং } r=0.7 \text { । }
$$

পরে দেখা গেল এতে একজোড়া ফল ($x=7, y=11$) সঠিক নয় এবং তা বাতিল হল। এর ফলে ' r '-এর মান কীরূণে প্রভাবিত হল দেখাও। (বেখানে $r=$ সহগতি সহগ)।
(খ) SRSWOR-এর জন্য Sample mean-এর Standard error নির্ণয় করো।
১৯। (ক) Type I এবং Type II error-এর সংজ্ঞা দাও।
(খ) দুটি রাশির গুণোতততরীয় মধ্যক নির্ণয় করো যেখানে এদের সমান্তরীয় মধ্যক ও বিপরীত মধ্যকদ্বয় যথাক্রনে 20 এবং 12।
(গ) X ఆ Y দুটি স্বাধীন সন্ভাব্য চলক (Independent random variables)-এর ক্ষেত্রে প্রমাণ করো যে $\operatorname{cov}(X, Y)=0$ ।
২+৩+৩

[English Version]

The figures in the margin indicate full marks.

Module - V
(Marks : 50)
Group - A
(Marks : 20)

Answer question no. 1 and any two questions from the rest.

1. Answer any two questions:
(a) Round-off the following numbers correct to five significant digits for the two numbers :

$$
32.1795 \& 0.009123450001
$$

(b) If $\frac{3}{7}$ is represented by the approximate number 0.4286 , compute the percentage error.
(c) Find $\Delta^{3}(1-a x)\left(1-a x^{2}\right)$, taking $h=1$.
(d) State Newton's backward interpolation formula.
2. (a) Given the following table :

x	0	5	10	15	20
$f(x)$	$1 \cdot 0$	$1 \cdot 6$	$3 \cdot 8$	$8 \cdot 2$	$15 \cdot 4$

Construct the difference table and compute $f(21)$ by Newton's Backward Formula.
(b) Find the first term of the series whose second and subsequent terms are $15,10,7,6,7,10$.
3. (a) Evaluate $\int_{0}^{1} \cos x d x$ taking 5 equal intervals. Explain the reason behind your choice of the integration formula used.
(b) Give the Geometrical significance of Simpson's One-third Rule.
4. (a) Using the method of bisection compute a root of $x^{3}-4 x-9=0$ between 2 and 3 , correct to 3 significant figures.
(b) Find an interval of length one in which a positive real root of the following equation lies :

$$
x^{3}-7 x^{2}-6 x-8=0
$$

5. Using Newton-Raphson method compute a real root of $x^{3}-8 x+4=0$ correct to four decimal places. Give the geometrical significance of this method.

Group - B
 (Marks : 30)

Answer question no. 6 and any two questions from the rest.
6. Answer any three questions :
(a) Examine whether the solution $x_{1}=2, x_{2}=3, x_{3}=0$ of the following system of equations is basic :

$$
\begin{aligned}
& 3 x_{1}+5 x_{2}-7 x_{3}=21 \\
& 6 x_{1}+10 x_{2}+3 x_{3}=42
\end{aligned}
$$

(b) Represent graphically the feasible region of the following LPP :

$$
\begin{array}{ll}
\operatorname{Max} & z=x_{1}+3 x_{2} \\
\text { subject to } & x_{1}-x_{2} \leq 1 \\
& x_{1}+x_{2} \geq 3 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

(c) Show that the set $S=\{x:|x| \leq 3\}$ is a convex set in the Euclidean space E^{1}.
(d) Find the extreme points of the following convex sets (shaded region) :

(i)

(ii)
(e) Find an initial basic feasible solution of the following Transportation Problem by North-West corner rule :

| | D_{1} | | | D_{2} | D_{3} |
| :---: | :---: | :---: | :---: | :---: | :---: |D_{4} TotalSupply

7. (a) A manufacturer produces two types of models A and B. Each A model requires 4 hours of grinding and 2 hours of polishing whereas each B model requires 2 hours of grinding and 5 hours of polishing. The manufacturer has 2 grinders and 3 polishers. Each grinder works for 40 hours a week and each polisher works for 60 hours a week. Profit on an A model is Rs. 3.00 and on a B model is Rs. 4.00. Whatever is produced in a week is sold in the market. Formulate this problem as an LPP to determine the production capacity of two types of models so that the company may make the maximum profit in a week.
(b) Reduce the feasible solution $x_{1}=2, x_{2}=3, x_{3}=2$ of the following system to a basic feasible solution :

$$
\begin{align*}
& x_{1}+x_{2}+2 x_{3}=9 \\
& 3 x_{1}+2 x_{2}+5 x_{3}=22 .
\end{align*}
$$

8. (a) Solve the following LPP graphically :

$$
\begin{array}{ll}
\text { Max } & z=4 x_{1}+7 x_{2} \\
\text { subject to } & 12 x_{1}+7 x_{2} \leq 42 \\
& 5 x_{1}+4 x_{2} \leq 20 \\
& 2 x_{1}+3 x_{2} \geq 6 \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

(b) Use Charnes' M-technique to solve the following LPP :

$$
\begin{array}{ll}
\text { Min } & z=x_{1}+x_{2} \\
\text { subject to } & 2 x_{1}+x_{2} \geq 4 \\
& x_{1}+7 x_{2} \geq 7 \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

9. (a) Find the optimal solution and corresponding cost of transportation in the following Transportation Problem :

	D_{1}	D_{2}	D_{3}	D_{4}	8
O_{1}	6	4	2	7	
O_{2}	5	1	4	6	14
O_{3}	6	5	2	5	19
O4	4	3	2	1	11
	7	13	12	10	

(b) Prove $S=\left\{(x, y) \in E^{2}:|x| \leq 2,|y| \leq 1\right\}$ is a convex set.
10. (a) Find the optimal assignments from the following profit matrix :

	D_{1}				D_{2}
	D_{3}	D_{4}	D_{5}		
O_{1}	2	4	3	5	4
O_{2}	7	4	6	8	4
O_{3}	2	9	8	10	4
	O_{4}	8	6	12	7
O_{5}	4				
	2	8	5	8	8

(b) Show that $x_{1}=1, x_{2}=1, x_{3}=1, x_{4}=0$ is a feasible solution of the system of equations

$$
\begin{aligned}
& x_{1}+2 x_{2}+4 x_{3}+x_{4}=7 \\
& 2 x_{1}-x_{2}+3 x_{3}-2 x_{4}=4
\end{aligned}
$$

Reduce the Feasible Solution to a Basic Feasible Solution.

Module - VI
(Answer either Group-A or Group-B)
Group - A

[Analytical Dynamics]

(Marks : 50)
Answer question no. 11 and any five questions from the rest.
11. Answer any five questions:
(a) If a particle moves in a straight line and its velocity v at a distance x from the origin is given by $v^{2}=2-x-x^{2}$, show that the motion is simple harmonic.
(b) State Newton's 2nd law of motion.
(c) Find the law of force parallel to the axis of y under which a particle describes the plane curve $x y=a^{2}, a$ is a constant.
(d) A particle describes the parabola $p^{2}=a r$ under a force which is always directed towards its focus. Find the law of force.
(e) At what height would the K.E. of a body falling from a height h be equal to half its potential energy?
(f) State the principle of conservation of linear momentum.
(g) Define Impulse. What is the difference between a continuous force and an impulsive force?
(h) Show that at an apse of a central orbit, the particle moves perpendicular to the radius vector.
(i) Prove that a planet has only a radial acceleration towards the sun.
12. A particle P of mass m is thrown vertically upwards with initial speed V. If the air resistance is $m k v$, show that P returns to its starting point with speed U given by, $g-k U=(g+k V) e^{-k(U+V) / g}$.
13. A particle is executing S.H.M. of amplitude a about a point O as the centre of oscillation and when at a distance $\frac{\sqrt{3}}{2} a$ from O , it receives a blow in the direction of motion, whereby its velocity is increased five times. Show that the amplitude of the subsequent S.H.M. is $\sqrt{7} a$.
14. A particle describes a plane curve under the action of a central attractive force F per unit mass. Prove that in usual notations the differential equation to the path of the particle is $\frac{h^{2}}{p^{3}} \frac{d p}{d r}=F$.
15. Find the expressions for the radial and cross-radial components of velocity and acceleration of a particle moving in a plane.
16. A particle moves under a force $m \mu\left\{3 a u^{4}-2\left(a^{2}-b^{2}\right) u^{5}\right\}, a>b$ and is projected from an apse at a distance $a+b$ with velocity $\sqrt{\mu} /(a+b)$; Show that its orbit is $r=a+b \cos \theta$.
17. A particle describes the curve $y=\frac{c\left(e^{x / 2}+e^{-x / 2}\right)}{2}$ under a force which is always parallel to the direction of y-axis. Find the law of force.
18. A particle describes the path $r^{4}=a^{4} \cos 4 \theta$ under a force which is always directed to the pole. Find the law of force.
19. Two masses $3 m$ and m are connected by a cord passing over a pulley and the whole is at rest with $3 m$ on the ground. A third mass m falls through a height h, strikes the second mass, adheres to it and sets the whole in motion. Prove that the mass $3 m$ will rise from the ground to a height $\frac{1}{5} h$.
20. If V_{1}, V_{2} are the linear velocities of a planet when it is respectively nearest and farthest from the Sun, prove that $(1-e) V_{1}=(1+e) V_{2}$, where e is the eccentricity of the orbit of the planet.

Group - B

[Probability and Statistics]

(Marks : 50)

Answer question no. 11 and any five questions from the rest.
11. Answer any five questions:
(a) If $P(A)=\frac{1}{3}, P(B / A)=\frac{1}{2}$, then find $P(A B)$.
(b) For any two events A and B, prove that $P(A+B) \geq P(A)+P(B)-1$.
(c) Find mean and median of the following numbers :
$21,1,30,91,50,80,11,61,80,12,51,80$.
(d) For any two events A and B, show that $\frac{1+P(A B)-P(A)-P(B)}{1-P(B)}=P(\bar{A} / \bar{B})$, provided $P(B) \neq 1$.
(e) State Baye's theorem.
(f) Define a statistic and give an example.
(g) If the regression lines of x on y and y on x are $x=4 y+5$ and $y=5 x+4$ respectively, then find the correlation coefficient of x and y.
(h) What do you mean by wholesale price index number?
(i) Define Null Hypothesis and Alternative Hypothesis.
12. (a) For three events A, B, C prove that $P(A B C)=P(A) \cdot P(B / A) \cdot P(C / A B)$.
(b) In a family, there are two children. What is the probability that (i) they are both male, (ii) they have same birthday?
$4+(2+2)$
13. (a) X is a $\operatorname{Binomial}(10, P)$ variate such that $4 P(x=4)=P(x=3)$. Find $P(x=9)$.
(b) Find the correlation coefficient of X and Y from the following bivariate data :

X	23	25	35	30	20	27	28	24	32
Y	33	35	45	40	30	37	38	34	42

14. (a) A sample of 100 measurements at breaking strength of cotton thread gave a mean of $7 \cdot 4$ and a standard deviation of 1.2 gms . Find 95% confidence limits for the mean breaking strength of the cotton thread. (Given $\mathrm{Z}_{.025}=1.96$)
(b) Determine the trend of rainfall in Kolkata using 3 years moving average method :

Year	2014	2015	2016	2017	2018	2019
Rainfall(mm)	506	780	720	580	660	700

15. (a) Obtain Price Index number (using Paasche's formula) from the following data :

Commodity	Base Year		Current year	
	Price(Rs.)	Quantity	Price(Rs.)	Quantity
A	350	18	370	22
B	150	12	200	20
C	280	24	320	30

(b) Which formula for Price Index Number does satisfy the factor reversal test? Discuss two advantages of chain index.
16. (a) A continuous random variable X has the p.d.f defined by $f(x)= \begin{cases}\frac{C x}{2021}(1-x) & , 0 \leq x \leq 1 \\ 0, & \text { elsewhere }\end{cases}$ Find the constant C and value of var $(1-21 x)$.
(b) Draw a Histogram from the following distribution :

Electricity consumed (watt)	$0-35$	$36-75$	$76-125$	$126-200$	$201-250$	$251-350$	$350-450$
No. of consumers	130	150	120	110	80	70	50

17. (a) Prove Baye's theorem on conditional probability.
(b) Two boxes A and B contained 5 red balls, 7 white balls and 6 red balls, 6 white balls respectively. A box was chosen at random and a ball was picked from that box randomly. If the ball picked found to be red, then what is the probability that the box A was selected?
18. (a) A bivariate sample of size 15 gave the result $\bar{x}=7, \bar{y}=11, s_{x}=4, s_{y}=4$ and $r=0 \cdot 7$. It was later found that one pair $(x=7, y=11)$ was inaccurate and was rejected. How would the value of r be affected by this rejection, where r stands for the correlation coefficient?
(b) Obtain the standard error of sample mean in case of simple random sampling without replacement (SRSWOR).
19. (a) Define Type I and Type II error.
(b) Find the geometric mean of two observations of their arithmetic mean and harmonic mean are 20 and 12 respectively.
(c) If X and Y are two independent random variables, prove that $\operatorname{cov}(X, Y)=0$.
