2021

COMPUTER SCIENCE — GENERAL

Paper : DSE-A-2

(Operation Research)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 in Section - I and any four from Section - II.

Section - I

1. Answer any five questions :

(a) What is Slack-variable?

(b) What is Surplus-variable?

(c) What are the conditions of having feasible solutions of set of linear equations?

(d) What do you mean by Basic Feasible Solution of equations?

(e) Define degeneracy in LP-Problems.

(f) Distinguish between separable programming and non-separable programming.

(g) Write short note on Buffer Stock.

(h) What do you mean by Optimal run time of a LPP?

(i) Define unbalanced transportation problem.

(j) State Bellman's Principle of Optimality.

Section - II

2. Find the initial Basic Feasible solution of the following transportation problem by VAM method. 10

Factroy		Availabla			
	W1	W2	W3	W4	Available
F1	19	30	50	10	7
F2	70	30	40	60	9
F3	40	8	70	20	18
Requirement	5	8	7	14	34

Please Turn Over

 2×5

V(5th Sm.)-Computer Science-G/DSE-A-2/CBCS (2)

3. A toy manufacturer uses 48,000 rubber wheels per year for its popular dump truck series. The firm makes its own wheels, which it can produce at a rate of 800 per day. The toy trucks are assembled uniformly over the entire year. Carrying cost is 10 per wheel a year. Set up cost for a production run of wheels in 450. The firm operates 240 days per year.

Determine each of the following :

- (a) Optimal run size
- (b) Minimum total annual cost for carrying and set up
- (c) Cycle time for the optimal run size
- (d) Run time.
- 4. A manufacturer of toys makes two types of toys, A and B. Processing of these two toys is done on two machines X and Y. The toy A requires two hours on machine X and six hours on machine Y. Toy B requires four hours on machine X and five hours on machine Y. There are sixteen hours of time per day available on machine X and thirty hours on machine Y. The profit obtained on both the toys is the same, i.e., 5 per toy. Formulate this problem as an integer LP problem. 10
- 5. Solve the following problem by Simplex method.

Maximized $Z = 10x_1 - 4x_2$ Subject to : $2x_1 - 6x_2 \leq 0$ $-x_1 + 2x_2 \geq -2$ $-3x_1 - 3x_2 \geq 24$ $x_1, x_2 \geq 0$

6. Find the optimum strategies for A and B and the value of the game.

		В		
	1	7	2	4
А	0	3	7	8
	5	2	6	10

7. Suggest optimum assignment of 4 workers A, B, C and D to 4 jobs I, II, III and IV. The time taken (hours) by different workers in completing the different jobs is given below : 10

	JOBS						
		Ι	П	Ш	IV		
Works	А	8	10	12	16		
WOIKS	В	11	11	15	8		
	С	9	6	5	14		
	D	15	14	9	7		

10

10

- 8. Write short notes on *any two* of the the following :
 - (a) Saddle Point in Game Theory
 - (b) Sensitivity analysis in LP Problems
 - (c) Non-linear Programming
 - (d) Branch and Bound Approach.

5×2