GURUDAS COLLEGE

Internal Examination, 2020

B.Sc Semester-II, STATISTICS (General) Paper-CC2/GE-2

Date-11.12.20
Time-1.30 hrs

Group-A (IA)

Answer any five questions. Choose the correct answer.

1.(a) If A and B are mutually exclusive events, then
(i) $\mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
(ii) $\mathrm{P}(\mathrm{AUB})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$
(iii) $\mathrm{P}(\mathrm{AUB})=0$
(b) A coin is tossed three times. The total number of sample points in the sample space is
(i) 6
(ii) 8
(iii) 3
(iv) 9
(c) Three letters are written and put at random inside three addressed envelopes. The probability that the letters go into right envelopes (i) $1 / 27$ (ii) $1 / 6$ (iii) $1 / 9$ (iv)none of these
(d) Two cards are drawn from a pack of 52 cards. The probability of both being aces is
(i) $1 / 26$
(ii) $1 / 221$
(iii) $1 / 2$
(iv) $2 / 13$
(e) Let X be a random variable with probability distribution function $f(x)=0.2$ for $|x|<1$

$$
\begin{aligned}
& =0.1 \text { for } 1<|x|<4 \\
& =0 \text { otherwise }
\end{aligned}
$$

Then probability $P(0.5<x<5)$ is
(i) 0.3
(ii) 0.5
(iii) 0.4
(iv) 0.8
(f) X is a variate between 0 and 3 . The value of $E\left(X^{2}\right)$ is
(i) 8
(ii) 7
(iii) 27
(iv) 9

Group-B (Theory)

2.(a) Give the classical definition of Probability and its limitation. $2+2$
(b) Give the Axiomatic definition of Probability. 3
3.(a) A and B are two independent events such that $\mathrm{P}\left(\mathrm{A}^{\mathrm{c}}\right)=0.7, \mathrm{P}\left(\mathrm{B}^{\mathrm{c}}\right)=\mathrm{k}$ and $\mathrm{P}(\mathrm{AUB})=0.8$ Find the value of k.
(b) Prove that $\mathrm{P}\left(\cap \mathrm{A}_{\mathrm{i}}\right) \geq \sum \mathrm{P}\left(\mathrm{A}_{\mathrm{i}}\right)-(\mathrm{n}-1)$, where $\mathrm{i}=1$ to n .
(b)Write down the properties of distribution function.
5. (a) If X and Y are independent random variables, then show that $E(X Y)=E(X) . E(Y)$.
(b) If X is a random variable then show that $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$, where a and b are constants.

Group-C (Practical)

6. There are three candidates A, B and C for the position of Principal of a College; their chances of getting the appointment are in the proportion $4: 2: 3$ respectively. The probability that A if selected would introduce Environment Club in the College is 0.3 . The probability of B and C doing the same are respectively 0.5 and 0.8 . (i) What is the probability that there will be an Environmental club in the College?
(ii) If Environmental Club is introduced in the College, then what is the probability that C is the Principal? $4+4$
7. The diameter, say X, of an electric cable, is assumed to be a continuous random variable with pdf $f(x)=6 x(1-x), 0 \leq x \leq 1$.
(i) Check that the above fulfil the properties of pdf.
(ii) Obtain the expression of cdf.
(iii) Determine the number k such that $P(X<k)=P(X>k)$.
