GURUDAS COLLEGE

Internal Examination, 2020

B.Sc Semester-II, STATISTICS (General)

Paper-CC2/GE-2

F.M-50

Date-11.12.20

Time-1.30 hrs

5x2

Group-A (IA)

	Answer any fiv	e questions.	Choose the correct answer.
--	----------------	--------------	----------------------------

1.(a) If A and B are mutually exclusive events, then

(i) P(AUB)=P(A).P(B) (ii) P(AUB)=P(A) + P(B) (iii) P(AUB)=0

(b) A coin is tossed three times. The total number of sample points in the sample space is

(i) 6 (ii) 8 (iii) 3 (iv) 9

- (c) Three letters are written and put at random inside three addressed envelopes. The probability that the letters go into right envelopes (i)1/27 (ii)1/6 (iii)1/9 (iv)none of these
- (d) Two cards are drawn from a pack of 52 cards. The probability of both being aces is
 (i)1/26 (ii)1/221 (iii)1/2 (iv)2/13
- (e) Let *X* be a random variable with probability distribution function f(x) = 0.2 for |x| < 1

= 0.1 for $1 < x < 4$
= 0 otherwise

Then probability	P(0.5 < x < 5) is		
(i) 0.3	(ii) 0.5	(iii) 0.4	(iv) 0.8
(f) X is a variate betw	ween 0 and 3. The value of	$E(X^2)$ is	
(i) 8	(ii) 7	(iii) 27	(iv) 9

Group-B (Theory)

2.(a) Give the classical definition of Probability and its limitation.	2+2
(b) Give the Axiomatic definition of Probability.	3
3.(a) A and B are two independent events such that $P(A^c)=0.7$, $P(B^c)=k$ and $P(AUB)=0.8$	
Find the value of k.	3
(b) Prove that $P(\cap A_i) \ge \sum P(A_i)$ -(n-1), where i=1 to n.	3

4. (a) Define random variable and expectation of a random variable. 2+2

(b)Write down the properties of distribution function.

5. (a) If X and Y are independent random variables, then show that E(XY) = E(X). E(Y).

(b) If *X* is a random variable then show that $Var(aX+b) = a^2 Var(X)$, where *a* and *b* are constants. 3

Group-C (Practical)

- 6. There are three candidates A, B and C for the position of Principal of a College; their chances of getting the appointment are in the proportion 4 : 2 : 3 respectively. The probability that A if selected would introduce Environment Club in the College is 0.3. The probability of B and C doing the same are respectively 0.5 and
 - 0.8. (i) What is the probability that there will be an Environmental club in the College?
 - (ii) If Environmental Club is introduced in the College, then what is the probability that C is the Principal?
- 7. The diameter, say X, of an electric cable, is assumed to be a continuous random variable with pdf $(x_1) = (x_1 + x_2) + (x_2 + x_3) + (x_3 + x_3) + (x_$
 - $f(x) = 6x(1-x), \ 0 \le x \le 1.$
 - (i) Check that the above fulfil the properties of pdf.
 - (ii) Obtain the expression of cdf.
 - (iii) Determine the number k such that P(X < k) = P(X > k).

7

2

3