2021

MATHEMATICS - HONOURS

Paper : CC-7
Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
\mathbb{R} denotes the set of real number.
Group - A
(Marks : 20)

1. Answer the following multiple choice questions with only one correct option. Choose the correct option and justify :
$(1+1) \times 10$
(a) The singular solution of the equation, $y=\frac{2}{3} x \frac{d y}{d x}-\frac{2}{3 x}\left(\frac{d y}{d x}\right)^{2}, x>0$ is
(i) $y= \pm x^{2}$
(ii) $y=\frac{x^{3}}{6}$
(iii) $y=x$
(iv) $y=\frac{x^{2}}{6}$.
(b) Let $y_{1}(x)$ and $y_{2}(x)$ be two linearly independent solutions of the differential equation $x^{2} y^{\prime \prime}(x)-2 x y y^{\prime}(x)-4 y(x)=0$ for $x \in[1,10]$. Consider the Wronskian $w(x)=y_{1}(x) y_{2}{ }^{\prime}(x)-y_{2}(x) y_{1}{ }^{\prime}(x)$.

If $w(1)=1$, then $w(3)-w(2)$ equals to
(i) 1
(ii) 2
(iii) 3
(iv) 5 .
(c) If $x^{2}+x y^{2}=C$, where $C \in \mathbb{R}$, is the general solution of the exact differential equation $M(x, y) d x+2 x y d y=0$, then $M(1,1)$ is
(i) 3
(ii) 2
(iii) 4
(iv) 1 .
(d) If $x^{h} y^{k}$ is an I.F. of the differential equation, $y(1+x y) d x+x(1-x y) d y=0$, then the ordered pair (h, k) is equal to
(i) $(-2,-2)$
(ii) $(-2,-1)$
(iii) $(-1,-2)$
(iv) $(-1,-1)$.
(e) The integrating factor of the differential equation $\frac{d y}{d x}(x \log x)+y=2 \log x$ is
(i) $\log x$
(ii) e^{x}
(iii) $\log (\log x)$
(iv) x.
(f) Singular solution of the equation $y=p x+\frac{a}{p}$ where $p \equiv \frac{d y}{d x}$, is
(i) $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=1$
(ii) $y^{2}=-4 a x$
(iii) $y^{2}=4 a x$
(iv) $x^{2}=4 a y$.
(g) Using variation of parameters the Wronskian of the following equation $y^{\prime \prime}-2 y^{\prime}+1=(x+1) e^{2 x}$ is
(i) $x e^{2 x}$
(ii) $e^{2 x}$
(iii) e^{x}
(iv) $e^{-2 x}$.
(h) Particular integral of $\left(D^{2}-3 D+2\right) y=e^{5 x}$ is
(i) $\frac{e^{5 x}}{12}$
(ii) $\frac{e^{5 x}}{13}$
(iii) $\frac{e^{5 x}}{14}$
(iv) $\frac{e^{5 x}}{15}$.
(i) The double limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}}$
(i) exists and equal to 0
(ii) exists and equal to 1
(iii) exists and equal to 2
(iv) does not exist.
(j) Consider the vector field $\vec{F}=(a x+y+a) \hat{i}+\hat{j}-(x+y) \hat{k}$, where ' a ' is a constant. If \vec{F}. curl $\vec{F}=0$, then the value of a is
(i) -1
(ii) 0
(iii) 1
(iv) $\frac{3}{2}$.

Group - B
 (Marks : 30)

Answer any six questions.
2. Find the family of curves such that, at any point of any member of the family, the x-intercept of the corresponding tangent line equals the ordinate at that point.
3. (a) Solve $\left(x^{2} y-2 x y^{2}\right) d x-\left(x^{3}-3 x^{2} y\right) d y=0$.
(b) Check whether the following equation is exact or not :

$$
\left(2 x^{2}+3 x\right) \frac{d^{2} y}{d x^{2}}+(6 x+3) \frac{d y}{d x}+2 y=(x+1) e^{x}
$$

4. Find the general solution of the differential equation $y(4 x+y) d x-2\left(x^{2}-y\right) d y=0$.
5. Reduce the equation $x p^{2}-2 y p+x+2 y=0$ to Clairant's form by using the substitution $x^{2}=u$ and $y-x=v$ and then solve it.
6. Solve by the method of variation of parameters, the equation $\frac{d^{2} y}{d x^{2}}-4 y=\sin h x$.
7. Solve the equation $\frac{d^{2} y}{d x^{2}}+(x-1)^{2} \frac{d y}{d x}-4(x-1) y=0$ in series about the point $x=1$.
8. Solve for x and y :

$$
\begin{aligned}
& \frac{d x}{d t}+\frac{2}{t}(x-y)=1 \\
& \frac{d y}{d t}+\frac{1}{t}(x+5 y)=t
\end{aligned}
$$

9. Solve by the method of undetermined coefficients

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+4 y=8 x^{2}+3+2 \cos 2 x \tag{5}
\end{equation*}
$$

10. Find a power series solution of the initial value problem

$$
\begin{gather*}
\left(x^{2}-1\right) \frac{d^{2} y}{d x^{2}}+3 x \frac{d y}{d x}+x y=0 \\
y(0)=4 \\
y^{\prime}(0)=6 \tag{5}
\end{gather*}
$$

11. Solve by the method of variation of parameters, the equation $\frac{d^{2} y}{d x^{2}}+a^{2} y=\sec a x$.

Group - C
 (Marks : 15)

Answer any three questions.

12. Let $f(x, y)$ be continuous at an interior point (a, b) of domain of definition of f and $f(a, b) \neq 0$. Show that $f(x, y)$ maintains same sign in a neighbourhood of (a, b). What can you say about the sign of f in a neighbourhood of (a, b) if $f(a, b)=0$?
13. Examine for existence of maxima or minima of the function $h(x, y)=x^{2}+y^{2}+(x+y+1)^{2}$.
14. Find the maximum or minimum of the function $f(x, y)=x y$, subject to the condition $5 x+y=13$, using the method of Lagrange's Multipliers.
15. For the function $f(x, y)=(|x y|)^{1 / 2}$, show that both f_{x} and f_{y} exist at $(0,0)$ but is not differentiable at $(0,0)$.
16. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
\begin{aligned}
f(x, y) & =\frac{x y^{2}}{x+y}, \text { if } x+y \neq 0 \\
& =0 \quad \text { if } x+y=0
\end{aligned}
$$

Then find the value of $\left(\frac{\partial^{2} f}{\partial x \partial y}+\frac{\partial^{2} f}{\partial y \partial x}\right)$ at the point $(0,0)$.

