2021

ECONOMICS - HONOURS

Paper : CC-7

(Statistical Methods for Economics)

Full Marks: 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
Group - A

1. Answer any ten questions :
2×10
(a) Clarify what you mean by an attribute and a variable with the help of examples.
(b) State whether the following statements are true or false :
(i) Expectation of a random variable cannot be negative.
(ii) For negative random variable $\mathrm{X}, \mathrm{V}(\mathrm{X})$ must be positive.
(c) There are four small eateries and one hotel in a locality. The costs of lunch per person in the eateries are ₹ 60 , ₹ 50 , ₹ 70 and ₹ 80 , and that for the hotel is ₹ 400 . What is the average cost of lunch in that locality? Justify your choice of the measure of central tendency.
(d) If the regression coefficient of X on Y is -1.6 and that of Y on X is -0.4 , then what is the correlation coefficient between X and Y ?
(e) Give the axiomatic definition of probability.
(f) Balls are drawn one-by-one with replacement from a box containing 4 red and 2 blue balls. Let R_{i} denote the event of getting a red ball in the i th drawing, $i=1,2$.
Examine whether (i) R_{1} and R_{2} are independent (ii) R_{1} and R_{2} are mutually exclusive.
(g) Examine whether the following result is true or false : $\mathrm{P}(\mathrm{A} \cup \mathrm{B}) \leq \mathrm{P}(\mathrm{A})$.
(h) Find the value of k such that the following function can be a probability function :

$$
f(x)=\left\{\begin{array}{cl}
k(2-x) & \text { when } 0<x<2 \\
0 & \text { elsewhere }
\end{array}\right.
$$

(i) For a random variable X, show that $\left[E\left(X^{2}\right)\right]^{1 / 2} \geq E(X)$.
(j) What is a moment generating function? Why is it so called?
(k) What do you mean by standard error?
(1) Define a statistic. Is it a random variable?
(m) What is meant by multi-stage sampling?
(n) When is an estimator called 'consistent'?
(o) If the two regression lines coincide, show that the correlation coefficient $\mathrm{r}= \pm 1$. If $\mathrm{r}=0$, show that the two regression lines are at right angles.

Group - B

2. Answer any three questions :
(a) A variable takes only two distinct values a and b, each with equal frequency. Find the second and third central moments.
(b) The second moments about the mean of two distributions are 9 and 16 , while the third moments about the mean are -8.1 and -12.8 respectively. Which distribution is more skewed to the left? Give reason.
(c) For the following data show that $\mathrm{r}=0$. Do you conclude that X and Y are uncorrelated? Why?

$$
\begin{array}{lrrrrrrr}
\mathrm{X} & -3 & -2 & -1 & 0 & 1 & 2 & 3 \\
\mathrm{Y} & 9 & 4 & 1 & 0 & 1 & 4 & 9
\end{array}
$$

(d) For each of the following probability functions, find $\mathrm{E}(\mathrm{X})$ and the distribution function : $\left(1+1 \frac{1}{2}\right) \times 2$
(i) $f(x)= \begin{cases}\frac{1}{3}, & \text { for } \mathrm{x}=0,1,3 \\ 0, & \text { otherwise }\end{cases}$
(ii) $f(x)= \begin{cases}\frac{1}{3} & \text { when } 0<x<3 \\ 0 & \text { elsewhere }\end{cases}$
(e) Define Type I and Type II errors.

Group - C

Answer any three questions.

3. (a) Evaluate standard deviation as a measure of dispersion.
(b) In a factory the average daily wage of 50 workers was ₹ 200 with a standard deviation ₹ 40 . Each worker is given a hike of ₹ 20 . What are the new average daily wage and standard deviation? If each worker is given a hike of 10% in wages, how are the mean and standard deviation affected?
4. (a) Can two events be mutually exclusive as well as mutually independent? Explain.
(b) Three lots contain respectively $10 \%, 20 \%$ and 25% defective articles. One article is drawn at random from each lot. What is the probability that among them there is (i) exactly one defective (ii) at least one defective?
5. (a) Examine the validity of the following statements :

Sampling error is connected with sample survey only and non-sampling error is connected with complete enumeration survey only.
(b) Consider the population $\{5,10,15\}$. Specify the sampling distribution of sample-mean drawing simple random samples of size 2 with replacement from this population. Verify the result that the expectation of sample-mean is equal to the population mean. Also find the standard error of sample-mean.
6. (a) Find the mode of a Poisson distribution.
(b) A sample of 100 dry battery cells tested to find the length of life produced the following result : $\mu=12$ hours, $\sigma=3$ hours. Assuming that the data are normally distributed, what $\%$ of battery cells are expected to have life (i) more than 15 hours and (ii) less than 18 hours? $6+(2+2)$ Given :

Z	1	2
Area	0.3413	0.4772

7. (a) Suppose that $\left(X_{1}, X_{2}, X_{3}\right)$ is a simple random sample drawn independently from a Normal population with mean μ and SD σ. Among the following two estimators, $\mathrm{T}_{1}=\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}\right) / 3$ and $T_{2}=X_{1}+X_{2}-X_{3}$, which one is the minimum variance unbiased estimator?
(b) In order to test whether a coin is perfect, the coin is tossed 5 times. The null hypothesis of perfectness is rejected if and only if more than 4 heads are obtained. What is the probability of Type-I error? Find the probability of Type-II error when the corresponding probability of head is 0.2 .
