GURUDAS COLLEGE INTERNAL EXAMINATION,2020 SUBJECT - CMSA (1+1+1 new regulations) Part-II (Honours) PAPER – III

FM=50

Answer Question No. 1 and any 2 from the rest

Answer any **four** Questions (4x5)

1. a. When a grammar said to be ambiguous? What are the limitations of finite state automata?

b. Design a DFA that accepts strings defined over $\sum = \{0,1\}$ whose decimal representation is divided by 2.

- c. What are the advantages of RK methods over Taylor series method?
- d. What is relative error and percentage error?
- e. What do you mean by Generating Function?

f. Find the number of relations from $A = \{a,b,c\}$ to $B = \{1,2\}$ Show that any finite simple graph has has at least 2 vertices with same degree?

- g. Define the Konnisberge bridge problem in Graph theory.
- h. When are two graphs G and G* said to be isomorphic?
- 2. a. Define Moore and Mealy machine.
 - b. Construct a Mealy machine which is equivalent to Moore machine given in the table below:

Present State	Next State		output
	A=0	A=1	
→ q0	q1	q2	1
q1	q3	q2	0
q2	q2	q1	1
q3	q0	q3	1

c. Consider a grammar G whose productions are

 $S \rightarrow aAS |a, A \rightarrow SbA|SS|ba$

Show that S contains aabbaa and construct a derivation tree whose yield is aabbaa.

[4+5+6]

- 3. a. Write down the composite expression for Simpsons $1/3^{rd}$ rule. Evaluate $\int_{1}^{2} dx/\sqrt{1 + x^{2}}$ by taking 8 intervals using this rule. Compute the error in this case.
 - b. Derive and State the algorithm of Newton Raphson method to find root of a equation .

[2+6+1+6]

- 4. a. State and Prove Generalized Pigeon hole principal.
- b. What do you mean by a proposition and tautology? Give examples.
- c. Define a minimum spanning tree for a given weighted undirected graph G. Describe the Krushkal's algorithm . Clearly state your assumption.

[4+5+6]

- 5. a. Write an algorithm for BFS traversal of a Graph.Prove that a simple graph with n vertices and k components can have almost (n-k) (n-k+1)/2 edges.
 - b. Solve the recurrence Relation together with the given initial condition an=5an-1-6an-2 for n>=2, a0=1,a1=0. What is the generating function for the sequence 1,1,1,1,1,1?
 - c. State the principal of Inclusion and Exclusion for 4 sets P,Q,R,S. Find the number of positive integers not exceeding 100 that are not divisible by 5 or by 7. [5+5+5]

Send the Scanned answer scripts to the following mail id: csexam.cmsa3@gmail.com