2022

MATHEMATICS - HONOURS
 Paper: CC-9

 (Partial Differential Equation and Multivariate Calculus-II)

 (Partial Differential Equation and Multivariate Calculus-II)}

Full Marks: 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

All ssmhols have their usual meaning.

> Group - A
> (Marks : 20)

1. Answer all questions with proper justification (one mark for correct answer and one mark for justification) :
$(1-1) \times 10$
(a) Nature of the partial differential equation (PDE) $u_{x x}^{2}+u_{x}^{2}+\sin u=c^{\prime}$ is
(i) non-linear first order
(ii) non-linear second order
(iii) linear first order
(iv) none of these.
(b) Elimination of the arbitrary constants a and b from the equation $\log _{\mathrm{e}}(a z-1)=x+a y-b$ gives the PDE
(i) $\left(1+\frac{\hat{c} z}{\hat{c} x}\right) \frac{\hat{c} z}{\hat{c} y}=z \frac{\hat{c} z}{\hat{c} x}$
(ii) $\left(1+\frac{\hat{z}}{\hat{c} y}\right) \frac{\hat{\partial} z}{\hat{c} y}=x \frac{\hat{\bar{z}}}{\hat{c} x}$
(iii) $\left(1+\frac{\hat{c} z}{\hat{c} y}\right) \frac{\hat{c} z}{\hat{c} x}=z \frac{\hat{c} z}{\hat{c} y}$
(iv) none of these.
(c) Characteristic curves of the PDE $u_{x x}+2 u_{x y}+5 u_{y y}+u_{x}=0$ is given by
(i) $y+(1-2 i) x=c_{1}, y+(1+2 i) x=c_{2}$
(ii) $y-(1-2 i) x=c_{1} \cdot y-(1+2 i) x=c_{2}$
(iii) $y-(1+2 i) x=c_{1} \cdot y-(1+2 i) x=c_{2}$
(ii) none of these.
(d) $u_{x x}-\sqrt{x} u_{x y}+x u_{y y}=e^{x}=$ for all $x \geqslant 0$ is
(i) hyperbolic for all values of x.
(ii) parabolic for all values of x.
(iii) elliptic for all values of x.
(ii) parabolic for $x=0$ and elliptic for $x>0$.
(e) $\left(x^{2}-y^{2}-z^{2}\right) \frac{\hat{c} z}{\partial x}+2 x \frac{\hat{a}}{\partial y}=2 x z$ has a solution
(i) $x^{2}+y^{2}+z^{2}=z+\left(\frac{y}{z}\right)$
(ii) $x^{2}-y^{2}-z^{2}=y f\left(\frac{y}{z}\right)$
(iii) $x^{2}+y^{2}+z^{2}=f\left(\frac{1}{z}\right)$
(iv) $x^{2}-y^{2}-z^{2}=z\left(\frac{1}{z}\right)$.
(f) The complete solution of the non-linear partial differential equation $\left(\frac{\bar{i}}{\hat{c} x}\right)^{2}+\left(\frac{i z}{\hat{\partial})^{2}}=c^{2}\right.$ is
(i) a cone
(ii) a cylinder
(iii) a sphere
(iv) none of these.
(g) Value of $\iint x y d x d y$ over the region bounded by $x y=1, y=0, y=x, x=1$ is
(i) $1 / 8$
(ii) $1 / 4$
(iii) 1
(iv) $1 / 2$
(h) If the order of integration $\int_{0}^{1} d y \int_{x=y}^{x=\sqrt{y}} f(x, y) d x$ is interchanged, then it will take the form
(i) $\int_{0}^{1} d x \int_{y=x^{2}}^{y=x} f(x, y) d x$
(ii) $\int_{0}^{1} d x \int_{x}^{1} f(x, y) d x$
(iii) $\int_{0}^{1} d x \int_{x^{2}}^{1} f(x, y) d x$
(iv) none of these.
(i) If $\vec{F}=x^{2} y \hat{i}+x z \hat{j}+2 y=\hat{k}$, then the value of div $\{$ curl $\vec{F}\}$ is
(i) 1
(ii) 0
(iii) 2
(ii) $\hat{i}+\hat{k}$.
(j) The work done by a particle in the force field $\vec{F}=3 x^{2} \hat{i}+(2 x z-y) \hat{j}+z \hat{k}$ along straight line from (0,0.0) to (2, 1, 3) is
(i) 16 units
(ii) 22 units
(iii) 14 units
(ii) 42 units.

Group - B
 (Marks : 21)

Answer any three questions.
2. (a) Apply Charpit's method to find the complete integral of the PDE $(p+q)\left(p x+q q^{*}\right)=1$.
(h) Form a PDE by eleminating the arbitrary function φ and ψ from the relation $u(x, y)=y \varphi(x)+x \varphi(y)$.

$$
4+3
$$

3. Using method of separation of variables solve the PDE $4 z_{x}+z_{y}=3 z$ under the condition $z=3 e^{-1}-e^{-5 y}$ at $x=0$.
4. Using $\eta=x+y$ as one of the transformation variable, obtain the canonical form of

$$
\frac{c^{2} u}{c x^{2}}-2 \frac{c^{2} u}{c x y}+\frac{c^{2} u}{\partial y^{2}}=0
$$

and hence solve it.
5. A tightly stretched string of length $/$ with fixed end points is initially at rest in its equilibrium position, and each of its points is given a velocity v. which is given by

$$
v(x)= \begin{cases}c x, & 0 \leq x<1 / 2 \\ c(1-x), & \frac{1}{2} \leq x \leq 1\end{cases}
$$

Find the displacement. c being the wave speed.
6. Solve the following initial boundary value problem

$$
\begin{array}{ll}
& u_{t}=u_{x, x}(0<x<\lambda, t>0) \\
\text { subject to the conditions } & u(x, 0)=3 \sin n \pi x(n \text { a }+\mathrm{ve} \text { integer }) \\
& u(0, t)=u(\lambda, t)=0 .
\end{array}
$$

Group - C
(Marks : 24)
Answer any four questions.
7. Lsing differentiation under the sign of integration find the value of $\int_{0}^{x} e^{-a^{2} x^{2}} \cos ^{2} b x d x$.
8. Evaluate the integral $\iint \frac{d x d y}{\left(1+x^{2}+y^{2}\right)^{2}}$ taken oter the triangle with vertices at $(0,0),(2,0)$ and $(1, \sqrt{3})$.
9. Find the value of the integral $\iiint_{E} \frac{d x d y d z}{x^{2}+y^{2}+(z-2)^{2}}$. where $E=(x, 1, z): x^{2}+y^{2}+z^{2} \leq 1^{1}$,
10. Define conservative vector field \vec{F} and express its relation with the scalar potential (of $x, 1:=1$. Write down Gauss's divergence theorem in case of an irrotational vector over the hemisphere centered at origin.
11. Find $\oint x d y+y d x$ bounded by the closed contour of astroid w ith $x=a \cos ^{3} y$ and $y=a \sin ^{3} 1$.
12. Find the surface area of the region common to the intersecting cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$.
13. Prove that the volume common to the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and the cylinder $x^{2}+y^{2}=a y$ is

$$
\frac{2}{9}(3 \pi-4) a^{3} .
$$

