2021

MATHEMATICS — **HONOURS**

Paper: DSE-A-1

(Bio-Mathematics)

Full Marks: 65

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

(Marks: 20)

1.	Answer the following multiple choice questions with	h only one correct option.	Choose the correct option
	with proper justification.		(1+1)×10

with	n prop	per justification.		$(1+1)\times 10$
(a)	The	equilibrium point (3, 0) of the following	g two	-dimensional model $\frac{dx}{dt} = x \left(1 - \frac{x}{3} \right) - xy$, $\frac{dy}{dt} = (x - 1)y$
	is a			
	(i)	stable node	(ii)	unstable saddle
	(iii)	locally asymptotically stable	(iv)	none of these.
(b)	The	Holling type-III functional response	φ(<i>N</i>)	represents in $(N, \varphi(N))$ plane
	(i)	a sigmoidal curve	(ii)	a closed curve
	(iii)	a hyperbolic curve	(iv)	a straight line.
		ID.		

(c) In Gompertz growth model $\frac{dP}{dt} = CP \ln(K/P)$, the population (P) grows fastest when P is equal to

(i) 0

(ii) K

(iii) e/K

(iv) K/e

C, K being positive parameters.

- (d) What type of bifurcation will occur in the system $\frac{dx}{dt} = \mu x x^3$, where μ is bifurcation parameter?
 - (i) Saddle-node bifurcation
- (ii) Pitchfork bifurcation
- (iii) Transcritical bifurcation
- (iv) None.

- (e) A two-dimensional system has characteristic equation $\lambda^2 + \alpha\lambda + \alpha\beta(1-\alpha) = 0$, (where $\alpha > 0$, $\beta > 0$) at the equilibrium $(\alpha, 1 - \alpha)$. If $\frac{4\beta}{1 + 4\beta} < \alpha < 1$, then the equilibrium is a
 - (i) unstable focus

(ii) unstable node

(iii) stable focus

(iv) stable node.

(f) In the two-dimensional system

$$\frac{dx}{dt} = 2 - x + \frac{x^2}{y},$$

$$\frac{dy}{dt} = x^3 - y$$

- (i) x is activator of y and y is inhibitor of x
- (ii) y is activator of x and x is inhibitor of y
- (iii) both of them are activator and inhibitor
- (iv) none of these.
- (g) The equilibrium point x = k for the equation $\frac{dx}{dt} = rx \left(1 \left(\frac{x}{k} \right)^{\theta} \right)$, where r, k, θ are positive parameters, is
 - (i) unstable

- (ii) stable
- (iii) stable but not asymptotically stable (iv) none of these.
- (h) Consider a dynamical system $\frac{dr}{dt} = r(1-r)(r-2)(r-3)$, $\frac{d\theta}{dt} = 1$, where (r, θ) be the polar coordinates on the plane. The number of limit cycles is
 - (i) 1

(ii) 2

(iii) 3

- (iv) 4.
- (i) The fixed point $x^* = \frac{\alpha 1}{\beta}$ of the difference equation $x_{n+1} = \frac{\alpha x_n}{1 + \beta x_n}$, $\alpha > 1$, $\beta > 0$ is
 - (i) unstable

- (ii) asymptotically stable
- (iii) stable but not asymptotically stable (iv) none of these.

(j) The system

$$\frac{dx}{dt} = -y + x\left(x^2 + y^2 - 1\right)$$

$$\frac{dy}{dt} = x + y\left(x^2 + y^2 - 1\right)$$

has no closed orbit inside the circle

(i)
$$x^2 + y^2 = 1$$

(ii)
$$x^2 + y^2 = 2$$

(iii)
$$x^2 + y^2 = \frac{1}{2}$$

(iv)
$$x^2 + y^2 = \frac{1}{4}$$
.

Group - B

(3)

Unit - I

(Marks: 15)

Answer any one question.

- 2. (a) State the basic assumptions of spruce budworm population dynamics and construct the model equation with logistic population growth and suitable predation term. Derive the corresponding dimensionless equation.
 - (b) Consider the following epidemic model:

$$\frac{dS}{dt} = A - rS - \frac{\beta SI}{1 + \alpha I},$$
$$\frac{dI}{dt} = \frac{\beta SI}{1 + \alpha I} - \mu I,$$

where A, r, α , β , μ are positive parameters. Find the equilibrium points of the system and discuss the nature of the equilibrium points.

- (c) Write short notes on the following:
 - (i) Gompertz growth
 - (ii) Basic reproduction number.

(3+2)+(3+3)+(2+2)

- **3.** (a) Consider the growth model $\frac{dN}{dt} = rN\left(\frac{N}{A} 1\right)\left(1 \frac{N}{K}\right)$, where r, A, K are positive parameters and A < K. Determine all the equilibrium points and discuss their stability.
 - (b) Consider the following harvesting model:

$$\frac{dN}{dt} = rN(1 - N/K) - qEN,$$

where E is the fishing effort, q is the catchability rate, N is the stock level, r is the growth rate, K is the carrying capacity. Investigate the stability of the equilibrium points and show that the maximum sustainable yield is rK/4.

(c) Consider the following competitive model:

$$\frac{dx}{dt} = x(1 - x - \alpha y),$$

$$\frac{dy}{dt} = \rho y(1 - y - \beta x),$$

where α , β , ρ are positive constants. Show that if $\alpha > 1$ and $\beta < 1$, the first species is going to extinction and second species will be surviving with its carrying capacity but the opposite phenomenon occur when $\alpha < 1$ and $\beta > 1$. (3+2)+(3+2)+5

(Marks: 20)

Answer any two questions.

4. (a) Let (x^*, y^*) be an equilibrium point of the following system :

$$\frac{dx}{dt} = f(x, y), \ \frac{dy}{dt} = g(x, y),$$

where f and g are continuously differentiable.

- (i) Obtain the linearized system about (x^*, y^*) .
- (ii) Hence discuss stability of (x^*, y^*) .
- (b) State the basic assumptions of classical Lotka-Volterra model for a predator-prey system. Write the model equations. Discuss the stability of the system about the non-trivial equilibrium.

$$(2+3)+(2+1+2)$$

5. (a) Consider the nonlinear system :

$$\frac{dx}{dt} = x \left\{ 2 \left(1 - \frac{x}{k} \right) - \frac{3y}{1+x} \right\},\,$$

$$\frac{dy}{dt} = y\left(-\frac{1}{2} + \frac{x}{1+x}\right), \ k > 0.$$

Find the equilibrium points and discuss their stability nature.

(b) What is meant by bifurcation? Discuss the saddle-node bifurcation for the system $\frac{dx}{dt} = \mu - x^2$, μ is the parameter. (2+4)+(1+3)

(5)

6. Consider the model following model of bacterial growth in a chemostat :

$$\begin{split} \frac{dN}{dt} &= \left(\frac{k_1 C}{k_2 + C}\right) N - \frac{FN}{V}, \\ \frac{dC}{dt} &= -\alpha \left(\frac{k_1 C}{k_2 + C}\right) N - \frac{FC}{V} + \frac{FC_0}{V}, \end{split}$$

where the symbols have their usual meanings.

(a) Show that the equations can be reduced to the following dimensionless form by the substitution

$$N = \frac{Fk_2}{\alpha V k_1} u, C = k_2 v, t = \frac{V}{F} \tau :$$

$$\frac{du}{d\tau} = \alpha_1 \left(\frac{v}{1+v}\right) u - u,$$

$$\frac{dv}{d\tau} = -\left(\frac{v}{1+v}\right) u - v + \alpha_2,$$

where α_1 and α_2 are the parameters to be determined by you.

- (b) Find the equilibrium points of the dimensionless system. Find the conditions on α_1 and α_2 so that the equilibrium points become biologically meaningful.
- (c) Determine the stability of the biologically meaningful equilibrium points. 2+3+5
- 7. What is a compartmental model? State the basic assumptions of Kermack-McKendrick SIR compartmental model. Draw the flowchart and write the model equations. Find the basic reproduction number. Determine the conditions for which the epidemic spreads and infection dies out.

 2+2+1+2+3

Answer any one question.

- 8. (a) Suppose x^* is a fixed point of the system $x_{n+1} = f(x_n)$, where f(x) is a continuously differentiable function and $|f'(x^*)| \neq 1$. Prove that x^* is asymptotically stable if $|f'(x^*)| < 1$ and unstable if $|f'(x^*)| > 1$.
 - (b) Consider the following non-linear difference equation

$$x_{n+1} = \frac{\lambda x_n}{\mu + x_n}$$
, where $\lambda > 0$, $\mu > 0$.

Find the fixed points and discuss their stability.

4+(3+3)

V(5th Sm.)-Mathematics-H/DSE-A-1/CBCS

(6)

9. (a) Solve the following non-homogeneous system and discuss the stability of the fixed point by using Cobweb diagram:

$$x_{n+1} = \frac{3}{4}x_n + 10.$$

(b) Consider the discrete-time predator-prey system :

$$x_{n+1} = ax_n \left(1 - x_n \right) - bx_n y_n,$$

$$y_{n+1} = -cy_n + dx_n y_n,$$

where a, b, c, d are positive parameters. Find the fixed points of the system and discuss their stability. (2+2)+(3+3)