V(5th Sm.)-Statistics-H/CC-12/CBCS

2021

STATISTICS — HONOURS

Paper : CC-12

(Linear Models and Regression)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions :

- (a) State a linear hypothesis in the context of a linear model. How do you test such hypothesis?
- (b) Explain why adjusted R^2 is a better tool to measure the goodness of fit of a model?
- (c) Define error space in a linear model.
- (d) Discuss the use of concominant variable in ANCOVA.
- (e) Explain why the standard linear model cannot be used to model count data.
- (f) Cite a hypothetical situation where one way ANOVA can be suggested to analyse the dataset.
- (g) What do you mean by a set of orthogonal treatment contrasts? What is the maximum number of possible orthogonal treatment contrasts if *K* group means are available?
- (h) Define odds ratio.
- 2. Answer any two questions :
 - (a) Write down a two-way ANOVA model with more than one observation per cell stating clearly the underlying assumptions. Assuming a balanced design derive the orthogonal splitting of the sum of squares necessary for the validity of F statistics.
 - (b) Consider a simple linear regression with a continuous response variable (y) and a continuous independent variable (x). Discuss how to test that the response variable is parallel to x-axis if plotted against the independent variables.
 - (c) Define a linear model. Discuss how an ANOVA model, a regression model and an ANCOVA model can be described through a linear model.
- 3. Answer any three questions :
 - (a) (i) Consider the following one-way fixed-effects model :

$$y_{ii} = \mu + \alpha_i + e_{ii}; i = 1, 2, ..., k and j = 1, 2, ..., n$$

Find an unbiased estimator of the average variance of the estimator of all possible elementary treatment contrasts.

Please Turn Over

2×5

 5×2

 10×3

- (ii) What do you mean by valid error in the context of ANOVA? Explain briefly the role of valid error in hypothesis testing in ANOVA.
- (b) For an independent variable x, assume that, the response variable y is dichotomous. If $\pi(x)$ is the average proportion of success for y
 - (i) define the logit function based on $\pi(x)$.
 - (ii) Discuss a regression technique to regress the logit function on x
 - (iii) Interpret the regression coefficients.
- (c) Consider the following analysis of covariance model :

$$y_{ij} = \mu + b_i + t_j + rx_{ij} + e_{ij} \ i = 1, 2, ..., r; \ j = 1, 2, ..., k$$

where e_{ij} 's are random errors which follow normal distribution with mean zero and variance σ^2 .

- (i) Obtain a test for $H_0: t_1 = t_2 = \dots = t_k$
- (ii) Obtain an unbiased estimates for $t_j t_{j'}$ $j \neq j'$ 7+3
- (d) (i) "On the linear model $E(\underline{Y}) = A\underline{\beta}$, if a parametric function $\underline{\lambda}'\underline{\beta}$ is estimable then best estimator of $\underline{\lambda}'\underline{\beta}$ is $\underline{\lambda}'\underline{\beta}$, where $\underline{\beta}$ is any solution of the equation $A'A\underline{\beta} = A'\underline{y}$ " Prove the statement.
 - (ii) Let the model equation be

$$y_{1} = 2\alpha_{1} + 3\alpha_{2} + e_{1}$$

$$y_{2} = 3\alpha_{1} + 4\alpha_{2} + e_{2}$$

$$y_{3} = 4\alpha_{1} + 5\alpha_{2} + e_{3}$$

Obtain the expression for the estimable parametric function. Hence check whether α_1 is estimable. If yes, find the best estimate of α_1 . 5+5

 (e) Consider a multiple regression model. Suggest a test for checking significance of the regression. Derive simultaneous confidence interval for regression coefficients.

2+4+4