GURUDAS COLLEGE

CHEMISTRY — GENERAL — PRACTICAL

2021

Subject-CEMG, SEM-I

Paper- CC/GE1

Time: 2 Hrs Full Marks: 30

The figures in the margin indicate full marks.

1. For the estimation of the quantity of Na_2CO_3 and $NaHCO_3$ present separately in a given mixture sample in *g* :

(a) Write down the principle of estimation mentioning all the equations involved and derive the working formula.

(b) Using the following data calculate the strength of ~ (N/20) HCl solution :

(i) Supplied strength of standardized NaOH solution = (N/20)

(ii) Standardization of ~ (N/20) HCl solution by standardized NaOH solution $2\frac{1}{2}+2\frac{1}{2}$

No. of	Volume of Std. NaOH	Burette Reading of HCl soln (mL)				
Titrations	taken (mL)	Initial	Final	Difference	Average reading	
1.	25	0	24.5	24.5		
2.	25	0	24.4	24.4	24.5	
3.	25	0	24.6	24.6		

(c) Using the above data, calculate separately the amount of Na_2CO_3 and $NaHCO_3$ present in the given mixture sample in *g* by using the following specimen results. 5+5 (i) Table for estimation of Na_2CO_3 and $NaHCO_3$:

No. of	Volume of	Burette Reading of HCl soln (mL)					
Titrations	Stock	Initial vol. of	Mean Initial vol.	Final vol. of	Mean Final vol.		
	solution	HCl needed	of HCl needed	HCl needed	of HCl needed		
	taken (mL)	$(V_1) (mL)$	(V ₁) (mL)	$(V_2) (mL)$	$(V_2) (mL)$		
1.	25	9.2		28.5			
2.	25	9.4	9.3	28.4	28.4		
3.	25	9.3		28.3			

2. Laboratory Note Book.