M. Sc. (Physics) 3rd Semester Examination 2018 PHY 512 (Statistical Mechanics)

Group A

Answer any five

1. For a canonical ensemble prove that the entropy is given by

$$
S=-k_{B} \sum_{r} p_{r} \log p_{r}
$$

where p_{r} is the probability for the occurrance of the r-th state.
Starting from Sackur Tetrode equation for entropy of an ideal mono-atomic gas

$$
S / k_{B}=N \log \left(\frac{V}{N}\right)+\frac{3 N}{2} \log \left(\frac{4 \pi m E}{3 N h^{2}}\right)+\frac{5 N}{2}
$$

Show that the chemical potential is given by $\mu=k_{B} T \log \left(\frac{N \lambda^{3}}{V}\right)$ where $\lambda=\frac{h}{\sqrt{2 \pi m k_{B} T}}$ is the thermal wavelength.

Consider a system of extreme relativistic gas consisting of N particles moving in one dimension. Show that the partition function is given by

$$
Q_{N}(L, T)=\frac{1}{N!}\left[2 L\left(\frac{k T}{h c}\right)\right]^{N}
$$

L being the space available in one dimension.
Show that for a system in canonical ensemble

$$
\left\langle(\Delta E)^{3}\right\rangle=k^{2}\left[T^{4}\left(\frac{\partial C_{V}}{\partial T}\right)_{V}+2 T^{3} C_{V}\right]
$$

where the symbols have their usual meaning.
A system has two energy levels 0 and E. These can be occupied by fermions with temperature T and chemical potential μ. The fermions are non-interacting. Write the partition function and find the average occupation number of the state with energy E. You do not have to consider the spin factor.
$[2+3]$
Consider a microcanonical ensemble of N interacting particles where each particle can have two energy levels 0 and ϵ. The state with energy ϵ is doubly degenerate. The total energy of the system is U.
(a) Find the number of microstates in terms of U, N and 6 .
(b) Find the temperature and show that

$$
\begin{equation*}
U=\frac{2 N \epsilon}{\exp \left(\epsilon / k_{B} T\right)+2} \tag{2+3}
\end{equation*}
$$

Group B

Answer any five

7. The Hamiltonian of the spin-1 Ising model in 1-dimension(in absence of any external magnetic field) is given by

$$
H=-J \sum_{i=1}^{N} S_{i} S_{i+1}
$$

where S_{i} can take the values $-1,0$ and 1.
(a) If $J>0$, what is the ground state (stable configuration at $T=0$) of this model ?
(b) Construct the 3×3 transfer matrix of this system. Using periodic boundary condition, show that the canonical partition function can be expressed as $Z_{N}=\operatorname{Tr} P^{N}, P$ being the transfer matrix.
8. (a) Identify the broken symmetries (if any), and define appropriate order parameters for the following transitions:
i. gas-liquid transition
ii. para to ferro transition in Heisenberg ferromagnets
(b) For a magnetic system in zero external field, the Landau free energy is written as $f(m)=$ $\frac{1}{2} r m^{2}+u m^{4}, m$ being the order parameter. If $u>0$ and $r=a\left(T-T_{c}\right)$, show that the system exhibits a second order phase transition at T_{c}. Why don't we have terms containg m or m^{3} in
the expansion of $f(m)$?
9. Let the critical exponents β and δ be defined as:
i) $H=0, t \rightarrow 0, M \sim|t|^{\beta}$
ii) $t=0, H \rightarrow 0, M \sim|H|^{1 / \delta}$

Here $t=\left(T-T_{c}\right) / T_{c}, M$ is the order parameter, and H is the conjugate field.
Starting from the static scaling hypothesis $G\left(\lambda^{a_{t}} t, \lambda^{a_{H}} H\right)=\lambda G(t, H)$, show that $\beta \delta=a_{H} / a_{t}$.

$$
K^{\prime}=R(K)=2 K\left(\frac{e^{3 K}+e^{-K}}{e^{3 k}+3 e^{-k}}\right)^{2}
$$

how that it corresponds to 3 fixed points : i) $K^{*}=0$ ii) $K^{*}=\infty$ and iii) $K^{*}=\frac{1}{4} \ln (2 \sqrt{2}+1)$. Hence gue that the system posseses a non-zero, finite critical temperature.
a) From the solution of the Langevin equation

$$
v(t)=v_{0} e^{-\gamma t}+\frac{1}{m} \int_{0}^{t} \eta\left(t_{1}\right) e^{-\gamma\left(t-t_{1}\right)} d t_{1}
$$

(Here $\eta(t)$ is a random force and γ is the coefficient of friction) compute the mean squared velocity $\left\langle v^{2}(t)\right\rangle$.
(b) Let a system (originally described by the Hamiltonian H) be perturbed by a small potential $V_{0} \sin ^{2} \omega t$. Working in the framework of linear response theory, show that the new partition function can be expressed as $z(H)\left(1-\frac{\beta V_{0}}{2}\right)$, where $z(H)$ is the equilibrium partition function.

$$
[3+2]
$$

(a) Consider a non-ideal gas, consisting of 10 particles. In the cluster expansion of the partition function, there is a term :

$$
\int f_{1,2} f_{3,4} f_{3,5} f_{8,9} d^{3} r_{1} \ldots \ldots \ldots \ldots d^{3} r_{10}
$$

Draw the corresponding graph and find $\left\{m_{l}\right\}$.
Define a Markov process. Show that the joint probability distribution function for such a process can be written as :

$$
p_{n}\left(\xi_{n}, t_{n} ; \xi_{n-1}, t_{n-1} ; \ldots ; \xi_{1}, t_{1}\right)=\left[\prod_{j=1}^{n-1} p\left(\xi_{j+1}, t_{j+1} \mid \xi_{j}, t_{j}\right)\right] p\left(\xi_{1}, t_{1}\right)
$$

for $n \geq 2$.

