S(3rd Sm.)-Physics-PHY-513/CBCS

2019

PHYSICS

Paper : PHY - 513

(Nuclear and Particle Physics)

Full Marks : 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

- 1. (a) Using the extreme single particle model, find out the ground state spin parity of the unclei $\frac{41}{20}$ Ca and $\frac{39}{20}$ Ca. Using Nordheim rules, comment on the possible spin parity of ground state $\frac{40}{19}$ K.
 - (b) What is the observed ground state spin parity of deuteron? Explain the possible admixture of orbital angular momentum states in deuteron in view of the fact that it has a non-zero quadrupole moment.
 - (c) For neutron-proton scattering, define scattering length. Explain the significance of its sign for two-body systems.
 (2+2)+(1+2)+(2+1)
- 1. (a) Using the effective range theory for bound *n*-*p* system, find a relation between phase shift (δ) with the scattering length (*a*) and effective range (r_{eff}) .
 - (b) Explain why we need an imaginary term in the optical potential.
 - (c) Describe briefly how the liquid drop model explains fission.6+2+2
- (a) Write down the reactions that produce helium in Big Bang nucleosynthesis. Explain qualitatively why elements heavier than Lithium are not produced in Big Bang.
 - (b) Find an expression for Gamow peak in astrophysical reactions at a temperature T.
 - (c) Find the most probable nature and multipolarity for the following γ -transitions :

(i)
$$1^- \to 2^+$$

(ii) $3/2^- \to 1/2^-$.

- (a) For a three-dimensional harmonic oscillator potential for the nuclear shell model, obtain the magic numbers. Explain the importance of including a spin-orbit potential.
 - (b) Sketch the nuclear binding energy per nucleon as a function of mass number. Explain why the binding energy per nucleon falls off at higher masses.
 - (c) Write the Hamiltonian for an axially symmetric rotor and write down its eigenvalues.

(3+2)+(2+1)+(1+1)

Please Turn Over

S(3rd Sm.)-Physics-PHY-513/CBCS

- 5. (a) Show that the nuclei which undergo β^+ decay can also decay by electron capture, but the reverse is not true.
 - (b) Write down whether the following transitions are allowed or first forbidden, and $\operatorname{Fer}_{m_{i_1}}$ Gamow-Teller or mixed : (i) $0^+ \to 0^+$ (ii) $1^+ \to 1^+$.
 - (c) In Wu's experiment $({}^{60}\text{Co} \rightarrow {}^{60}\text{Ni} + e^- + \overline{\nu}_e)$, ${}^{60}\text{Co}$ has $J_z = 5$ and ${}^{60}\text{Ni}$ has $J_z = 4$. Assuming the initial nucleus to be at rest, in which direction will the electrons be preferentially emitted? Explain why.

3+2+(1+2)+2

1.

- (d) Put the u, d and s quarks in an I_3 -Y diagram.
- 6. (a) Consider $\psi(x) \to e^{i\theta(x)}\psi(x)$. If $D_{\mu}\psi \equiv (\partial_{\mu} + ieA_{\mu})\psi$ transforms in the same way as ψ , find the transformation of A_{μ} . Write down the Lagrangian of QED using D_{μ} . Why cannot one put a photon mass term in this Lagrangian?
 - (b) Write down the four-fermion point-interaction Lagrangian for the muon decay process μ⁻ → e⁻ ν_μν_e. Write down the corresponding amplitude in terms of the particle and antiparticle spinors u(p) and v(p). How is this amplitude modified when one considers W-boson exchange in the place of point interaction? Hence relate the Fermi constant G_F to the weak coupling constant g and the W-boson mass (you may neglect numerical factors).
 - (c) Explain why the existence of the Δ^{++} baryon with spin $-\frac{3}{2}$ leads to the color degree of freedom. (2+1+1)+(1+1+1+1)+2 2
- 7. (a) Write down the isotriplet and isosinglet two-nucleon states. Hence show that

$$\sigma(pn \to \pi^0 d): \sigma(pp \to \pi^+ d) = 1:2.$$
 (Here σ denotes cross-section.)

- (b) If Φ is an SU(2) doublet, show that $\tilde{\Phi} \equiv i\tau_2 \Phi^*$ is also an SU(2) doublet. Hence construct an SU(2) doublet from the antiquarks \bar{u} and \bar{d} .
- (c) Represent the equation $3 \times 3 = 6 + 3^*$ in terms of *SU*(3) Young tableaux. Use this equation to explain why there cannot be a two-quark hadron. (2+2)+(3+1)+(1-1)

(2)