2016

STATISTICS — GENERAL

Second Paper

Full Marks - 100

The figures in the margin indicate full marks

Candidates are required to give their answers in their own words as far as practicable

SET-I

Group - A

Answer Question No. I and any three questions from the rest

1. Answer any four of the following questions :

2×4

- (a) Define unbiasedness of an estimator.
- (b) Consistency is a Large sample property-Explain.
- (c) Define the pdf of a χ^2 -variate with 11 degrees of freedom.
- (d) Distinguish between 'statistic' and 'parameter'
- (e) What is confidence coefficient?
- (f) Define power function of a hypothesis testing procedure and hence specify the power of the test.
- (g) Write down the test statistic with its sampling distribution for testing the equality of two variances based on samples drawn from two independent normal distributions.
 - (h) What is 'z-score'? Mention its uses.
- (a) Briefly explain the following in connection with hypothesis testing problem:
 - (i) size
 - (ii) p-value.
- (b) suppose a random sample of n pairs of observations $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ is drawn from a bivariate normal population with means μ_x and μ_y , variances σ_x^2 and σ_y^2 and correlation coefficient ρ . Then perform the following tests:
 - (i) $H_0: \mu_x = \mu_y$ against $H_1: \mu_x \neq \mu_y$ and
 - (ii) $H_0: \mu_x = \mu_y$ against $H_1: \sigma_x \neq \sigma_y$.

(2+2)+(5+5)

[Turn Over]

- 3. (a) If X and Y are two independent random variables where X follows Poisson (λ_1) and Y follows Poisson (λ_2) . Then derive the distribution of (X+Y).
 - (b) Mention the important properties of t and F distribution.
- (c) If X_1, X_2, X_3 be a random sample from $N(0, \sigma^2)$ population, then write down the distribution of $(X_2^2 + X_3^2)/\sigma^2$. State the sampling distributions of the statistics.

$$\frac{\sqrt{2}X_3}{\sqrt{X_1^2 + X_2^2}}$$
 and $\frac{X_2^2}{X_3^2}$. $4+(2+2)+(2+2+2)$

- (a) Define minimum variance unbiased estimator.
- (b) Write down two important properties of maximum likelihood estimator (MLE). Find the MLE of σ^2 based on $X_1, X_2, ..., X_n$ drawn from $N(\mu, \sigma^2)$ for both the situations with known and unknown μ . Also check the 2+(2+6+4) unbiasedness for both the estimators.
- 5. (a) Find a confidence interval for population median with confidence coefficient $(1-\alpha)$ based on a sample of size n from a normal population with mean μ and variance σ^2 (unknown).
- (b) Sketch the testing procedure for equality of two proportions based on large samples of size n_1 and n_2 drawn, respectively, from two populations.
- (c) Describe the test for 'goodness of fit' and mention two other uses 5+4+(3+2) of Pearsonian Chi square test.
- 6. (a) Show that sample mean is consistent for population mean under appropriate assumption.
- (b) Let T_1 and T_2 be statistics with $E(T_1) = \theta_1 + \theta_2$ and $E(T_2) = \theta_1 \theta_2$. Find unbiased estimators of θ_1 and θ_2 .
- (c) Derive the test of significance for testing whether population correlation coefficient is zero or not based on a sample of size n from a bivariate 4+4+6 normal population.
 - 7. Write notes on any two of the following:

 - (b) Method of Moments estimation
 - (c) χ^2 -distribution.

(a) Student's t-test

7×2

Group - B

Answer Question No. 8 and any three questions from the rest

8. Answer any four of the following questions:

2×4

- (a) What do you mean by 'Standardized Death Rate' ?
- (b) Write down the advantage of NRR over GRR.
- (c) Mention one relative merit and demerit of mathematical curvefitting method to find trend in a time series data.
- (d) Define the additive model that is usually adopted to analyse time series data.
 - (e) What is 'purchasing power of money'? Explain with example.
- (f) Define 'Fisher Ideal Index' and show that it satisfies 'Time Reversal Test'.
- (g) Write down the possible indications about lack of control in a production process.
 - (h) What is AOQL? Explain in connection with single sampling plan.
- (a) Define CBR and point out its defects. Discuss the uses of General Fertility Rate and Total Fertility Rate in this connection.
- (b) Point out the uses of Life Table. Write down the difference between Complete and Abridged Life Table. (3+3+3)+(3+2)
- 10. (a) What is an Index Number? Briefly discuss the various steps in the construction of Index Number.
- (b) Define Weighted Aggregative Index and hence formulate the Laspeyres' Index and Edgeworth-Marshall's Index.
- (c) Verify whether Laspeyres' and Paasche's price index numbers satisfy the 'Time Reversal Test'. (2+5)+4+3
- 11. (a) What do you mean by 'Statistical Quality Control'? Distinguish between Process Control and Product Control.
- (b) How do you examine whether the process is in control based on the range? Discuss both the situations when underlying parameters are specified and not-specified.
- (c) What is the role of OC function in a single sampling inspection plan? (2+4)+6+2

[Turn Over]

- 12. (a) Briefly discuss about various components of a time series. Give an example of an appropriate time series data with which you would associate the trend component.
- (b) What is "Moving Average Mehtod'? Write down two merits and demerits of this method. (6+1)+(3+2+2)
 - 13. (a) Distinguish the following:
 - (i) Item quality measure and subgroup quality measure
 - (ii) Seasonal and Cyclical Fluctuations.
 - (b) Show that GRR is more than NRR.
 - (c) Discuss about the errors in index numbers.

 $(3 \times 2) + 3 + 5$

14. Write notes on any two of the following:

7×2

- (a) Factor Reversal Test
- (b) Ratio to Moving Average method
- (c) Control chart for number of defective items.