2022

MATHEMATICS - HONOURS

Paper: CC-3

(Real Analysis)

Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
$\mathbb{N}, \mathbb{R}, \mathbb{Q}$ denote the set of all natural, real and rational nos.
Notations and symbols have their usual meanings.

1. Answer all the following multiple choice questions. For each question 1 mark for choosing correct option and 1 mark for justification.
(a) Let $A=[5,6)$ and $B=\left\{1+\frac{1}{n}: n \in \mathbb{N}\right\}$. Let $S=\{x-y: x \in A, y \in B\}$. Then $\operatorname{Inf} S$ is
(i) 3
(ii) 4
(iii) 5
(iv) 6 .
(b) Let $S=\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup\{0,2\}$ and $T=\bigcup_{n=1}^{\infty}\left(2-\frac{1}{n+1}, 3+\frac{1}{n}\right)$. Then $S \cap(\mathbb{R}-T)$ is
(i) open
(ii) closed
(iii) both open and closed
(iv) neither open nor closed.
(c) Let $A=\{[x]: 0<x<100\}$ and $B=\left\{2^{i}: i \in \mathbb{Z}\right\}$. Then $A \cup B$ is
(i) uncountable
(ii) enumerable
(iii) finite
(iv) empty.
($[x]$ denotes the largest integer not exceeding x)
(d) $\left\{\frac{5^{n}}{n!}+\left(\frac{3}{5}\right)^{n}\right\}$
(i) converges to 1
(ii) converges to 0
(iii) diverges to $+\infty$
(iv) converges to 3 .
(e) Number of subsequential limits of $\left\{\frac{(-1)^{2 n} \sin \frac{n \pi}{3}}{n^{5}}\right\}$ is
(i) 1
(ii) 2
(iii) 3
(iv) 5 .
(f) Let S be a bounded set of real numbers such that S does not have a least element. Then
(i) $\operatorname{Inf} S=-\infty$
(ii) each point of S is an isolated point
(iii) S has at least one limit point (iv) S fails to have any limit point.
(g) Let S be a non-empty subset of \mathbb{R}, which of the following statement is true?
(i) If x is a boundary pt. of S then $x \in S$.
(ii) If x is a limit pt. of S then $x \in S$.
(iii) If x is an isolated pt. of S then $x \in S$.
(iv) If x is an exterior point of S then $x \in S$.
(h) Let $\left\{x_{n}\right\}_{n=1}^{\infty}=\{\sqrt{1},-\sqrt{1}, \sqrt{2},-\sqrt{2}, \sqrt{3},-\sqrt{3}, \ldots\}$ and $z_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \forall n \in \mathbb{N}$. Then $\left\{z_{n}\right\}_{n=1}^{\infty}$ is
(i) unbounded above
(ii) monotonic
(iii) bounded but not convergent
(iv) convergent.
(i) Let $A=\left\{\frac{2}{z+1}: z \in(-1,1)\right\}$. Then $A^{d} \backslash A$ is
(i) ϕ
(ii) $(1, \infty)$
(iii) $\{1\}$
(iv) none of these.
(j) If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a monotone increasing sequence of real numbers and bounded above then the sequence $\left\{\frac{\sum_{i=1}^{n} a_{i}}{n}\right\}_{n=1}^{\infty}$ is
(i) bounded but not convergent
(ii) always convergent
(iii) always divergent
(iv) none of these.

Unit - 1

Answer any four questions.
2. State Archimedean property of real numbers. Use it to show that between any two distinct real numbers there are infinitely many rational numbers. $\quad 1+4$
3. Prove or disprove the following statements :
(a) If S, T are non-empty bounded sets of real numbers and $V=\{x y: x \in S, y \in T\}$, then $\operatorname{Sup} V=\operatorname{Sup} S \times \operatorname{Sup} T$.
(b) The set $A=\{x \in \mathbb{R}: x+y \in \mathbb{Q}$ for some $y \in \mathbb{R}\}$ is countable. 3+2
4. (a) Show that union of two enumerable sets of real numbers is enumerable.
(b) Prove or disprove : If S is a set of real numbers with its derived set consisting of exactly one point, then S must be bounded.
5. (a) Prove or disprove : Every bounded infinite subset of \mathbb{R} has an interior point.
(b) Let a and b be two irrationals such that $a<b$. Show that there is a rational number q such that $a<q<b$.
6. (a) Define closed set. Give an example of a closed set which is non-empty and has no limit point in \mathbb{R}.
(b) Prove or disprove : $\mathbb{R} \backslash\{x \in \mathbb{R}: \sin x=0\}$ is an open set.
7. Prove that the derived set of any set in \mathbb{R} is a closed set. Hence, show that $\left\{x \in \mathbb{R}: x^{2}-3 x+2 \leq 0\right\}$ is a closed set. $3+2$
8. (a) Prove or disprove : The set A of all open intervals with irrational end points is an uncountable set.
(b) Prove or disprove : Let A and B be any two subsets of \mathbb{R}. If $\inf (A) \subseteq \inf (B), A^{d} \subseteq B^{d}$ and $\bar{A} \subseteq \bar{B}$ then $A \subseteq B$.

Unit - 2

Answer any four questions.

9. ' l ' is a limit point of a set $S \subseteq \mathbb{R}$ if and only if there exists a sequence of distinct elements of S converging to ' l '. Establish this result.
10. Show that every monotonically increasing sequence which is bounded above is convergent.

Use this result to show that $\left\{x_{n}\right\}$ is convergent where $x_{1}=\sqrt{13}$ and $x_{n}=\sqrt{13+x_{n-1}} \forall n \geq 2$. $3+2$
11. (a) Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be convergent sequence of real numbers such that $x_{n} \leq y_{n} \forall n \in \mathbb{N}$. Prove that $\lim _{x \rightarrow \infty} x_{n} \leq \lim _{x \rightarrow \infty} y_{n}$.
(b) Prove that $\left\{\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\ldots+\frac{1}{(2 n)^{2}}\right\}$ converges to zero.
12. (a) Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=l<1$. Show that $\lim _{n \rightarrow \infty} a_{n}=0$.
(b) Prove or disprove : If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences of real numbers such that $\left\{x_{n} y_{n}\right\}$ is convergent,
then both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded.
13. (a) Prove or disprove : A sequence of irrational numbers can not have a rational limit.
(b) Find the limit, if exists, of the sequence $\left\{\frac{x^{n}}{n!}\right\}_{n=1}^{\infty}$ where $x \in \mathbb{R}$.
14. State and prove Cauchy's general principle of convergence.
15. (a) Prove or disprove : Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a bounded sequence of real numbers and $\lambda=\operatorname{Sup}\left\{a_{n}: n \in \mathbb{N}\right\}$. Then there is a subsequence $\left\{a_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $\underset{k \rightarrow \infty}{\operatorname{Lt}} a_{n_{k}}=\lambda$.
(b) If $\left|a_{n+1}-a_{n}\right|<\left(\frac{1}{2}\right)^{n}$ for all $n \in \mathbb{N}$, show that $\left\{a_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence.

Unit - 3

Answer any one question.
16. State and prove Leibnitz test. Using it show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent. $1+3+1$
17. (a) State Cauchy's n-th root test. Use it to show that the series $\frac{1^{3}}{3}+\frac{2^{3}}{3^{2}}+1+\frac{4^{3}}{3^{4}}+\ldots+\frac{n^{3}}{3^{n}}+\ldots$ is convergent.
(b) Show that the series $\frac{1}{5}+\frac{1}{7}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\frac{1}{5^{3}}+\frac{1}{7^{3}}+\ldots+\frac{1}{5^{n}}+\frac{1}{7^{n}}+\ldots$. is convergent.

