2022

MATHEMATICS — HONOURS

Paper : CC-3

(Real Analysis)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

N, R, Q denote the set of all natural, real and rational nos.

Notations and symbols have their usual meanings.

1. Answer *all* the following multiple choice questions. For each question 1 mark for choosing correct option and 1 mark for justification. 2×10

(a) Let	$A = [5, 6) \text{ and } B = \left\{1 + \frac{1}{n} : n \in \right\}$	$\mathbf{N} \bigg\}. \text{ Let } S = \{x - y : x \in A, y \in B\}. \text{ Then Inf } S \text{ is}$
(i)	3	(ii) 4
(iii)	5	(iv) 6.
(b) Let	$S = \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \cup \{0, 2\} \text{ and } T$	$=\bigcup_{n=1}^{\infty} \left(2 - \frac{1}{n+1}, 3 + \frac{1}{n}\right).$ Then $S \cap (\mathbb{R} - T)$ is
(i)) open	(ii) closed
(iii)) both open and closed	(iv) neither open nor closed.
(c) Let	$A = \{ [x] : 0 \le x \le 100 \}$ and B	$= \{2^i : i \in \mathbb{Z}\}$. Then $A \cup B$ is
(i)) uncountable	(ii) enumerable
(iii)) finite	(iv) empty.
([x] denotes the largest integer not exceeding x)		
(d) $\left\{\frac{5}{n}\right\}$	$\left\{\frac{n}{!!}+\left(\frac{3}{5}\right)^n\right\}$	
(i) converges to 1	(ii) converges to 0

(iii) diverges to $+\infty$ (iv) converges to 3.

Please Turn Over

(e) Number of subsequential limits of
$$\begin{cases} \frac{(-1)^{2n} \sin \frac{n\pi}{3}}{n^5} \\ \end{cases}$$
 is
(i) 1 (ii) 2

(iii) 3 (iv) 5.

(f) Let S be a bounded set of real numbers such that S does not have a least element. Then
(i) Inf S = -∞
(ii) each point of S is an isolated point

(2)

(iii) S has at least one limit point (iv) S fails to have any limit point.

- (g) Let S be a non-empty subset of \mathbb{R} , which of the following statement is true?
 - (i) If x is a boundary pt. of S then $x \in S$.
 - (ii) If x is a limit pt. of S then $x \in S$.
 - (iii) If x is an isolated pt. of S then $x \in S$.
 - (iv) If x is an exterior point of S then $x \in S$.

(h) Let
$$\{x_n\}_{n=1}^{\infty} = \{\sqrt{1}, -\sqrt{1}, \sqrt{2}, -\sqrt{2}, \sqrt{3}, -\sqrt{3}, ...\}$$
 and $z_n = \frac{1}{n} \sum_{i=1}^n x_i, \forall n \in \mathbb{N}$. Then $\{z_n\}_{n=1}^{\infty}$ is

(i) unbounded above (ii) monotonic

(iii) bounded but not convergent (iv) convergent.

(i) Let
$$A = \left\{ \frac{2}{z+1} : z \in (-1,1) \right\}$$
. Then $A^d \setminus A$ is
(i) ϕ (ii) $(1, \infty)$
(iii) $\{1\}$ (iv) none of these.

(j) If $\{a_n\}_{n=1}^{\infty}$ is a monotone increasing sequence of real numbers and bounded above then the

sequence
$$\left\{ \frac{\sum_{i=1}^{n} a_i}{n} \right\}_{n=1}^{\infty}$$
 is

- (i) bounded but not convergent (ii) always convergent
- (iii) always divergent (iv) none of these.

Unit - 1

(3)

Answer any four questions.

- State Archimedean property of real numbers. Use it to show that between any two distinct real numbers there are infinitely many rational numbers.
- 3. Prove or disprove the following statements :
 - (a) If S, T are non-empty bounded sets of real numbers and $V = \{xy : x \in S, y \in T\}$, then $\sup V = \sup S \times \sup T$.
 - (b) The set $A = \{x \in \mathbb{R} : x + y \in \mathbb{Q} \text{ for some } y \in \mathbb{R}\}$ is countable. 3+2
- 4. (a) Show that union of two enumerable sets of real numbers is enumerable.
 - (b) Prove or disprove : If S is a set of real numbers with its derived set consisting of exactly one point, then S must be bounded. 3+2
- 5. (a) Prove or disprove : Every bounded infinite subset of **R** has an interior point.
 - (b) Let a and b be two irrationals such that a < b. Show that there is a rational number q such that a < q < b. 2+3
- 6. (a) Define closed set. Give an example of a closed set which is non-empty and has no limit point in R.
 - (b) Prove or disprove : $\mathbb{R} \setminus \{x \in \mathbb{R} : \sin x = 0\}$ is an open set. (1+1)+3
- 7. Prove that the derived set of any set in \mathbb{R} is a closed set. Hence, show that $\{x \in \mathbb{R} : x^2 3x + 2 \le 0\}$ is a closed set. 3+2
- 8. (a) Prove or disprove : The set A of all open intervals with irrational end points is an uncountable set.
 - (b) Prove or disprove : Let A and B be any two subsets of ℝ. If inf(A) ⊆ inf(B), A^d ⊆ B^d and A ⊆ B then A ⊆ B.

Unit - 2

Answer any four questions.

- 9. 'l' is a limit point of a set $S \subseteq \mathbb{R}$ if and only if there exists a sequence of distinct elements of S converging to 'l'. Establish this result. 5
- 10. Show that every monotonically increasing sequence which is bounded above is convergent.

Use this result to show that $\{x_n\}$ is convergent where $x_1 = \sqrt{13}$ and $x_n = \sqrt{13 + x_{n-1}}$ $\forall n \ge 2$. 3+2

11. (a) Let $\{x_n\}, \{y_n\}$ be convergent sequence of real numbers such that $x_n \le y_n \forall n \in \mathbb{N}$. Prove that $\lim_{x \to \infty} x_n \le \lim_{x \to \infty} y_n$.

Please Turn Over

(b) Prove that
$$\left\{\frac{1}{n^2} + \frac{1}{(n+1)^2} + ... + \frac{1}{(2n)^2}\right\}$$
 converges to zero. 2+3

12. (a) Let $\{a_n\}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = l < 1$. Show that $\lim_{n \to \infty} a_n = 0$.

- (b) Prove or disprove : If $\{x_n\}$ and $\{y_n\}$ are sequences of real numbers such that $\{x_n y_n\}$ is convergent, then both $\{x_n\}$ and $\{y_n\}$ are bounded. 3+2
- 13. (a) Prove or disprove : A sequence of irrational numbers can not have a rational limit.
 - (b) Find the limit, if exists, of the sequence $\left\{\frac{x^n}{n!}\right\}_{n=1}^{\infty}$ where $x \in \mathbb{R}$. 3+2

5

- 14. State and prove Cauchy's general principle of convergence.
- 15. (a) Prove or disprove : Let $\{a_n\}_{n=1}^{\infty}$ be a bounded sequence of real numbers and $\lambda = Sup\{a_n : n \in \mathbb{N}\}$.

Then there is a subsequence $\{a_{n_k}\}_{k=1}^{\infty}$ of $\{a_n\}_{n=1}^{\infty}$ such that $\underset{k\to\infty}{Lt} a_{n_k} = \lambda$.

(b) If
$$|a_{n+1} - a_n| < \left(\frac{1}{2}\right)^n$$
 for all $n \in \mathbb{N}$, show that $\{a_n\}_{n=1}^{\infty}$ is a Cauchy sequence. $3+2$

Unit - 3

Answer any one question.

- 16. State and prove Leibnitz test. Using it show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ is convergent. 1+3+1
- 17. (a) State Cauchy's *n*-th root test. Use it to show that the series $\frac{1^3}{3} + \frac{2^3}{3^2} + 1 + \frac{4^3}{3^4} + \dots + \frac{n^3}{3^n} + \dots$ is convergent.
 - (b) Show that the series $\frac{1}{5} + \frac{1}{7} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{5^3} + \frac{1}{7^3} + \dots + \frac{1}{5^n} + \frac{1}{7^n} + \dots$ is convergent. (1+2)+2

(4)