2021

MATHEMATICS - HONOURS

First Paper

(Module - I)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.
[Throughout the paper \mathbb{R} and \mathbb{Z} denote the set of real numbers and set of integers respectively]

Group - A

(Marks : 35)
Answer any seven questions.

1. (a) If p and q are relatively primes, then find out $g c d$ of $p+q$ and $p-q$.
(b) Correct or justify the following statement:

For any positive integer $n, f(n)=n^{2}+n+13$ is always a prime integer.
2. (a) If $a \equiv b(\bmod m)$, then show that $a^{n} \equiv b^{n}(\bmod m)$ for all positive integers n. Is the converse true? Justify your answer.
(b) Prove or disprove : $\operatorname{gcd}(0, x)=x$ where x is a natural number.
3. (a) Solve the congruence $12 x \equiv 9(\bmod 15)$.
(b) State Euclid's second theorem.
4. (a) Using Chinese Remainder theorem, solve the linear congruence $9 x \equiv 21(\bmod 30)$.
(b) If p is a prime integer and k is any positive integer, prove that

$$
\phi\left(p^{k}\right)=p^{k}\left(1-\frac{1}{p}\right)
$$

where ϕ denotes the Euler's phi function.
5. (a) Prove that for any non-zero complex number $z, \arg z-\arg (-z)= \pm \pi$, according as $\arg z>0$ or <0, where $\arg z$ is the principal argument of z.
(b) Find all complex numbers z such that $\exp (z+\bar{z})=1$.
6. (a) If $\cos h^{-1}(x+i y)+\cos h^{-1}(x-i y)=\cos h^{-1} a$, where x, y, a are real numbers and $a>1$, prove that the point (x, y) lies on an ellipse.
(b) Find the product of all values of $(-i)^{\frac{1}{4}}$.
7. (a) If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are n positive numbers and $a_{1}+a_{2}+a_{3}+\ldots+a_{n}=\mathrm{S}$, then show that

$$
\frac{S}{S-a_{1}}+\frac{S}{S-a_{2}}+\frac{S}{S-a_{3}}+\ldots+\frac{S}{S-a_{n}} \geq \frac{n^{2}}{n-1}
$$

(b) If α is an imaginary root of the equation $x^{7}=1$, then find the value of $\left(\alpha^{6}+1\right)\left(\alpha^{5}+1\right)\left(\alpha^{4}+1\right)\left(\alpha^{3}+1\right)\left(\alpha^{2}+1\right)(\alpha+1) . \quad 3+2$
8. Using Sturm's functions, show that the roots of $x^{4}+4 x^{3}-x^{2}-10 x+3=0$ are all real and distinct.
9. Solve $x^{4}+3 x^{3}+5 x^{2}+4 x+2=0$ by Ferrari's method.
10. Calculate Sturm's functions and find the number and nature of real roots of the equation $x^{5}-5 x+2=0$.
11. Show that all the imaginary roots of the equation $x^{7}=1$ are special roots. If α is a special root of $x^{7}=1$, form the equation whose roots are $\alpha+\alpha^{6}, \alpha^{2}+\alpha^{5}$ and $\alpha^{3}+\alpha^{4}$.
12. (a) If α, β, γ are the roots of the equation $a x^{3}+3 b x^{2}+3 c x+d=0$, find the value of

$$
(2 \alpha-\beta-\gamma)(2 \beta-\gamma-\alpha)(2 \gamma-\alpha-\beta)
$$

(b) Find the value of k, for which the equation $x^{4}+4 x^{3}-2 x^{2}-12 x+k=0$ has 4 real and unequal roots.
13. Show that if the roots of the equation $x^{4}+x^{3}-4 x^{2}-3 x+3=0$ are increased by 2 , the transformed equation is a reciprocal equation. Solve the reciprocal equation and hence obtain the solution of the given equation.

Group - B

(Marks : 15)

Answer any three questions.

14. (a) Prove of disprove: If X, Y and Z are subsets of a set S, then $X \Delta Z=X \Delta Y$ implies $Z=Y$.
(b) Let $A=\{1,2,3,4\}$ and a relation ρ on A is given by $\rho=\{(1,1),(1,2),(1,3),(1,4),(2,3),(3$, $2),(2,1),(4,1),(3,1)\}$. Verify whether the relation is an equivalence relation.
15. (a) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are two mappings such that $g_{0} f: A \rightarrow C$ is surjective.

Verify whether g is surjective. Is it necessary that f is surjective? Justify your answer.
(b) Find two mappings f and g such that $f_{\circ} g \neq g_{\circ} f$.
16. (a) Prove that a finite semigroup in which both cancellation laws hold is a group.
(b) Does the set $M_{2}(\mathbb{R})=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \right\rvert\, a, b, c, d \in \mathbb{R}\right\}$ form a group with respect to matrix multiplication? Justify your answer.
17. (a) If each element of a group G is its own inverse, then prove that G is abelian. Is the converse true? Justify your answer.
(b) Give an example of a group (G, o) in which $\mathrm{o}(a) \cdot \mathrm{o}(b) \neq \mathrm{o}(a \mathrm{ob})$, for some $a, b \in G$; where $\mathrm{o}(a)$ means order of the element a in G.
$(2+1)+2$
18. (a) In a group $(G, o), o(a)=5$ and $a \mathrm{o} b o a^{-1}=b^{2}$. Show that if $b \neq e$ (the identity element of G), then $\mathrm{o}(b)=31$.
(b) If (H, \cdot) is a subgroup of (G, \cdot), show that $H^{-1}=H$, where $H^{-1}=\left\{a^{-1}: a \in H\right\}$.

