(T(I)-Mathematics-H-1(Mod.-II)

2021

MATHEMATICS — HONOURS

First Paper

(Module – II)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Notations have their usual meanings

Group - A

(Marks : 20)

Answer question no. 1 and any two questions from the rest.

- 1. Answer any one question :
 - (a) (i) For what value of λ does $\lambda xy 8x + 9y 12 = 0$ represent a pair of straight lines?
 - (ii) Find the equation of the bisectors of the angles between the lines

$$x^2 - 5xy + 4y^2 + x + 2y - 2 = 0.$$
 2+6

- (b) Reduce the following equation to its canonical form : $16x^2 24xy + 9y^2 104x 172y + 44 = 0$. Find the nature of the conic and find the equation of its axis. 6+1+1
- 2. If the two conics $\frac{l_1}{r} = 1 e_1 \cos \theta$ and $\frac{l_2}{r} = 1 e_2 \cos(\theta \alpha)$ touch one another, then show that

$$l_1^2 \left(1 - e_2^2\right) + l_2^2 \left(1 - e_1^2\right) = 2l_1 l_2 \left(1 - e_1 e_2 \cos \alpha\right).$$
6

- 3. Find the locus of the poles of the normal chords of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. 6
- 4. The products of the lengths of the tangents drawn from a point P to the parabola $y^2 = 4ax$ is equal to the product of the focal distance of P and the latus rectum. Prove that the locus of P is the parabola $y^2 = 4a(x + a)$.
- 5. If $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents two straight lines equidistant from the origin, then show that $f^4 g^4 = c(bf^2 ag^2)$.

Please Turn Over

[T(I)-Mathematics-H-1(Mod.-II)]

(2)

Group - B

(Marks : 15)

Answer question no. 6 and any two questions from the rest.

6. Find the equation of the plane through the point (1, 2, 3) and perpendicular to the planes 2x + 3y - 4z = 9and x + 2y + 2z = 5.

Or,

Find the distance of the point (3, 8, 2) from the straight line $\frac{x-1}{2} = \frac{y-3}{4} = \frac{z-2}{3}$ measured parallel to the plane 3x + 2y - 2z + 15 = 0.

7. A variable plane has intercepts on the co-ordinate axes, the sum of whose squares is a constant k^2 . Show that the locus of the foot of the perpendicular from the origin to the plane is

$$\left(x^{2} + y^{2} + z^{2}\right)^{2} \left(x^{-2} + y^{-2} + z^{-2}\right) = k^{2}.$$
6

8. A variable line, intersects the lines y = 0, z = c; x = 0, z = -c and is parallel to the plane lx + my + nz = p. Prove that the surface generated by it is

$$lx(z-c) + my(z+c) + n(z^2 - c^2) = 0.$$
6

- 9. Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$, $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$. Find also the equations and the points of intersection in which it meets the lines.
- 10. The plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes in *A*, *B*, *C*. Prove that the planes through the axes and the internal bisectors of the angles of the triangle *ABC* pass through the line,

$$\frac{x}{a\sqrt{b^2 + c^2}} = \frac{y}{b\sqrt{c^2 + a^2}} = \frac{z}{c\sqrt{a^2 + b^2}}.$$
6

Group - C

(Marks : 15)

Answer any three questions.

- 11. Forces \vec{P}, \vec{Q} act at *O* and have a resultant \vec{R} . If any transversal cut their lines of action at *A*, *B* and *C* respectively, prove by vector method that $\frac{P}{OA} + \frac{Q}{OB} = \frac{R}{OC}$.
- 12. Prove by vector method that $\sin(\alpha \beta) = \sin \alpha \cos \beta \cos \alpha \sin \beta$, where α and β are both acute angles and $\alpha > \beta$.

T(I)-Mathematics-H-1(Mod.-II)

- **13.** Prove that for any three vectors $\vec{\alpha}, \vec{\beta}, \vec{\gamma}, [\vec{\alpha} \times \vec{\beta} \quad \vec{\beta} \times \vec{\gamma} \quad \vec{\gamma} \times \vec{\alpha}] = [\vec{\alpha} \quad \vec{\beta} \quad \vec{\gamma}]^2$.
- 14. Obtain the vector equation of the straight line through the points $\hat{i} 2\hat{j} + \hat{k}$ and $3\hat{k} 2\hat{j}$. Show that this line intersects the plane passing through the origin and the points $4\hat{j}$ and $2\hat{i} + \hat{k}$ at a point given by $\frac{1}{5}(6\hat{i} 10\hat{j} + 3\hat{k})$.
- 15. (a) If $\vec{a}, \vec{b}, \vec{c}$ be three non-coplanar, non-zero vectors, then show that any vector \vec{d} can be expressed as $\vec{d} = \frac{[\vec{b} \ \vec{c} \ \vec{d}] \vec{a} + [\vec{c} \ \vec{a} \ \vec{d}] \vec{b} + [\vec{a} \ \vec{b} \ \vec{d}] \vec{c}}{[\vec{a} \ \vec{b} \ \vec{c}]}.$
 - (b) Find the moment about the point $(\hat{i} + 2\hat{j} \hat{k})$ of a force represented by $(3\hat{i} + \hat{k})$ acting through the point $(2\hat{i} \hat{j} + 3\hat{k})$. 3+2