2021

MATHEMATICS - HONOURS

First Paper

(Module - II)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Notations have their usual meanings

Group - A

(Marks : 20)

Answer question no. $\mathbf{1}$ and any two questions from the rest.

1. Answer any one question:
(a) (i) For what value of λ does $\lambda x y-8 x+9 y-12=0$ represent a pair of straight lines?
(ii) Find the equation of the bisectors of the angles between the lines

$$
x^{2}-5 x y+4 y^{2}+x+2 y-2=0 .
$$

(b) Reduce the following equation to its canonical form : $16 x^{2}-24 x y+9 y^{2}-104 x-172 y+44=0$. Find the nature of the conic and find the equation of its axis.
2. If the two conics $\frac{l_{1}}{r}=1-e_{1} \cos \theta$ and $\frac{l_{2}}{r}=1-e_{2} \cos (\theta-\alpha)$ touch one another, then show that $l_{1}^{2}\left(1-e_{2}^{2}\right)+l_{2}^{2}\left(1-e_{1}^{2}\right)=2 l_{1} l_{2}\left(1-e_{1} e_{2} \cos \alpha\right)$.
3. Find the locus of the poles of the normal chords of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
4. The products of the lengths of the tangents drawn from a point P to the parabola $y^{2}=4 a x$ is equal to the product of the focal distance of P and the latus rectum. Prove that the locus of P is the parabola $y^{2}=4 a(x+a)$.
5. If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents two straight lines equidistant from the origin, then show that $f^{4}-g^{4}=c\left(b f^{2}-a g^{2}\right)$.

Group - B
 (Marks : 15)

Answer question no. 6 and any two questions from the rest.
6. Find the equation of the plane through the point $(1,2,3)$ and perpendicular to the planes $2 x+3 y-4 z=9$ and $x+2 y+2 z=5$.

Or,

Find the distance of the point $(3,8,2)$ from the straight line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z+15=0$.
7. A variable plane has intercepts on the co-ordinate axes, the sum of whose squares is a constant k^{2}. Show that the locus of the foot of the perpendicular from the origin to the plane is

$$
\begin{equation*}
\left(x^{2}+y^{2}+z^{2}\right)^{2}\left(x^{-2}+y^{-2}+z^{-2}\right)=k^{2} . \tag{6}
\end{equation*}
$$

8. A variable line, intersects the lines $y=0, z=c ; x=0, z=-c$ and is parallel to the plane $l x+m y+n z=p$. Prove that the surface generated by it is

$$
\begin{equation*}
l x(z-c)+m y(z+c)+n\left(z^{2}-c^{2}\right)=0 . \tag{6}
\end{equation*}
$$

9. Find the shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}, \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$. Find also the equations and the points of intersection in which it meets the lines.
10. The plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ meets the axes in A, B, C. Prove that the planes through the axes and the internal bisectors of the angles of the triangle $A B C$ pass through the line,

$$
\begin{equation*}
\frac{x}{a \sqrt{b^{2}+c^{2}}}=\frac{y}{b \sqrt{c^{2}+a^{2}}}=\frac{z}{c \sqrt{a^{2}+b^{2}}} . \tag{6}
\end{equation*}
$$

Group - C

(Marks : 15)
Answer any three questions.
11. Forces \vec{P}, \vec{Q} act at O and have a resultant \vec{R}. If any transversal cut their lines of action at A, B and C respectively, prove by vector method that $\frac{P}{O A}+\frac{Q}{O B}=\frac{R}{O C}$.
12. Prove by vector method that $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$, where α and β are both acute angles and $\alpha>\beta$.
13. Prove that for any three vectors $\vec{\alpha}, \vec{\beta}, \vec{\gamma},[\vec{\alpha} \times \vec{\beta} \vec{\beta} \times \vec{\gamma} \quad \vec{\gamma} \times \vec{\alpha}]=[\vec{\alpha} \vec{\beta} \vec{\gamma}]^{2}$.
14. Obtain the vector equation of the straight line through the points $\hat{i}-2 \hat{j}+\hat{k}$ and $3 \hat{k}-2 \hat{j}$. Show that this line intersects the plane passing through the origin and the points $4 \hat{j}$ and $2 \hat{i}+\hat{k}$ at a point given by $\frac{1}{5}(6 \hat{i}-10 \hat{j}+3 \hat{k})$.
15. (a) If $\vec{a}, \vec{b}, \vec{c}$ be three non-coplanar, non-zero vectors, then show that any vector \vec{d} can be expressed as

$$
\vec{d}=\frac{[\vec{b} \vec{c} \vec{d}] \vec{a}+[\vec{c} \vec{a} \vec{d}] \vec{b}+[\vec{a} \vec{b} \vec{d}] \vec{c}}{[\vec{a} \vec{b} \vec{c}]} .
$$

(b) Find the moment about the point $(\hat{i}+2 \hat{j}-\hat{k})$ of a force represented by $(3 \hat{i}+\hat{k})$ acting through the point $(2 \hat{i}-\hat{j}+3 \hat{k})$.

