2018

STATISTICS – HONOURS

Third Paper

Group - A

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Section - I

Answer any two from question nos. 1-4 and any one from question nos. 5 and 6

1. Show that
$$\frac{dF(x)}{dx} = \frac{1}{h} \left[\Delta - \frac{1}{2} \Delta^2 + \frac{1}{3} \Delta^3 - \dots \right] F(x)$$
, where h is the difference interval.

2. Show that for any
$$\alpha$$
, $\Delta \operatorname{Tan}(ax) = \frac{\sin(a)}{\cos(ax)\cos(a(x+1))}$.

3. Given

x	0-5	0.6	0.7	0.8	0.9	1.0	1.1
у	0.48	0.56	0.65	0.73	0.80	0.87	0.93

Find
$$\int_{0.5}^{1.1} y^2 dx$$
.

- 4. Consider the vector $v = (2\ 3\ 1)'$. Find the vector $u = (u_1, u_2, u_3)'$ which maximizes the dot product with v, subject to the condition that u is of unit length.
- 5. (a) Derive Lagrange's interpolation formula.
 - (b) Show that the Newton's Forward formula can be obtained as a special case of (a).
 - (c) Describe the method of iteration for solving an equation in one unknown and discuss its convergence.

 6+4+5
- **6.** (a) Show that $f(x, y) = y^2 + x^2y + x^4$ has a minimum at the origin.
 - (b) Evaluate $\iint \frac{dxdy}{a^2 + x^2 + y^2}$ taken over the region $x^2 + y^2 \le 1$.

Please Turn Over

(c) Consider the transformation $(X_1, X_2) \rightarrow (U_1, U_2)$ given by

$$U_1 = \sqrt{-2 \ln X_1} \cos 2\pi X_2$$

$$U_2 = \sqrt{-2InX_1} \sin 2\pi X_2$$

Find the Jacobian of the transformation.

5+5+5

5

Section - II

Answer any two from question nos. 7-10 and any one from question nos. 11 and 12.

- 7. Let the p.g.f. of X be gx(t). Find the p.g.f.s of X+1 and 2X in terms of gx(t).
- 8. Suppose F () is the cdf of the standard logistic distribution. Find an expression for the quantile function F^{-1} (p).
- Suppose events occur in time according to a Poisson process with parameter λ and let X ~ Poisson (λ).
 Let T denote the length of time until k occurrences. Find the p.d.f. and c.d.f. of T.
- 10. What are equivalent scores. Discuss how it can be obtained from ogives.
- 11. (a) A company insures homes in 3 cities J, K and L. The losses occurring in these cities are independent. The m.g.f. for the loss distributions of the cities are respectively

$$M_I(t) = (1-2t)^{-3}$$
, $M_K(t) = (1-2t)^{-2.5}$ and $M_I(t) = (1-2t)^{-4.5}$.

Let X represent the combined loss from the 3 cities. Calculate E(X3).

- (b) Find the mean and variance of a hypergeometric distribution with parameters N, n and p (symbols having their usual meaning). Write down the limiting form of the distribution when $N \to \infty$.
- (c) Let $X \sim N$ (0, 1) independently of $W \sim \text{Bernoulli } (0.5)$. Define Y = X if W = 0 and W = 1. Find the p.d.f. of Y and hence that of X+Y.
- 12. (a) Suppose $X \sim N$ (μ , σ^2), but is truncated to lie in the interval (a, b), $-\infty < a < b < \infty$. Find the p.d.f. of X and hence find E(X).
 - (b) Suppose that X has the basic Pareto distribution with shape parameter a. Show that 1/X has the beta distribution.
 - (c) The random variables X, Y follow a bivariate distribution with joint density $f(x, y) = 3e^{-(x+y)}$ for $0 < 2x < y < \infty$ and zero elsewhere. Find the density of Z = Y/X

6+4+5