2018

STATISTICS - HONOURS

Fifth Paper

(Group - A)

Full Marks - 50

The figures in the margin indicate full marks

Candidates are required to give their answers in their own words as far as practicable

Notations have their usual significance

Unit - I

1. Answer any two questions:

 5×2

- (a) Define multivariate data. Distinguish between sample multiple correlation coefficient and population multiple correlation coefficient.
- (b) Suppose $r_{0i} = \alpha$ for i = 1, 2, ..., p and $r_{ij} = \beta$ for i, j = 1, 2, ..., p, $i \neq j$. Find the expression for $r_{0.123...p}$ in terms of α and β . If $\alpha = 0$, find the value of $r_{0.123...p}$ and comment.
- (c) Suppose $X \sim N_p(\mu, \Sigma)$, Σ is positive definite. Find the moment generating function of X.
 - (d) Give intuitive justification of

$$0 \le \rho_{1,23\dots p-1} \le \rho_{1,23\dots p} \le 1$$
.

Discuss all the equality cases.

- 2. Answer any one question:
- (a) (i) Define sample partial correlation coefficient. Discuss its importance. Show that

$$\left(1-r_{1,23...p}^{2}\right) \leq \left(1-r_{12}^{2}\right)\left(1-r_{13,2}^{2}\right)...\left(1-r_{1\overline{p-1},23...\overline{p-2}}^{2}\right)$$

Discuss the equality case.

9

- (ii) Explain the concept of ellipsoid of concentration.
- 6
- (b) (i) Suppose $X_{-}^{p\times 1}$ is a random vector with mean vector μ and

dispersion matrix Σ . Find $E\left(X-\mu\right)'\Sigma^{-1}\left(X-\mu\right)$ and verify which of the probabilities $P\left[\left(X-\mu\right)'\Sigma^{-1}\left(X-\mu\right)>3p\right]$ and $P\left[\left(X-\mu\right)'\Sigma^{-1}\left(X-\mu\right)<3p\right]$ is larger.

[Turn Over]

(ii) In (i) if $p = 3$, $\mu = (0,0,0)'$ and $\Sigma = \begin{bmatrix} c & 1 & c \\ 0 & c & 1 \end{bmatrix}$, then	en is it

possible to find c for which a'X and b'X are independently distributed, where a' = (1,-1,-1) and b' = (1,1,1)? Justify your answer.

(iii) Define probability density function of a random vector. Give an example of a probability density function of a 5-variate random vector (with justification) which is non-normal but all its marginals are normal.

Unit - II

3. Answer any two questions:

5×2

4

6

- (a) Let $X_1, X_2, ..., X_n$ be independent and identically distributed uniform $(0,\theta)$ random variables, $\theta > 0$. Find two "consistent and unbiased" estimators for θ . Which one would you prefer and why?
- (b) Using the definition of consistency, show that if T_n is consistent for θ , then e^{Tn} is consistent for e^{θ} .
- (c) Give an example of a sequence of random variables $\{X_n\}$ which converges in distribution to Z, a standard normal variable and also give an example of a sequence of random variables $\{Y_n\}$ which does not converge in distribution to Z. (Give reasons).
 - (d) Explain the concept of delta method with an example.

4. Answer any one question:

(a) (i) Find the large sample distribution of Pearsonian chi-square for multinomial proportion.

9

(ii) Describe how you can use Pearsonian chi-square statistic to test whether a large sample of observations is a random sample from Normal (1,1) distribution.

6

(b) (i) Suppose (X_i, Y_i) , i = 1, 2, ..., n is a random sample from $N_2(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$. Find a variance stabilizing transformation for the sample correlation r. Give a real life application of it mentioning the advantage of this transformation.

6

(ii) State central limit theorem for independent and identically distributed random variables. Discuss its importance in statistical inference.

4

(iii) Write a short note on large sample standard error of sample coefficient of variation.

5