$1 \pi 1$ Jnd

nswer in your own words as far as practicable. The marks on the right-hand margin indicate the full marks for the question.
| Marks : 50
Time: 2 Hours
Answer $Q .1$ and any three from the rest

1. Answer any five
(a) Find the fixed points and their nature for the system $\dot{x}=4 x^{2}-16$. Plot schematically $x(t)$ as a function of t for $x(0)=-4.0$ and $x(0)=1.0$.
$2+2$
(b) Consider the initial value problem $\dot{x}=x^{1 / 3}$ with $x(0)=0$. Comment on the existence and uniqueness of the solution(s). What happens for the initial condition $x(0)=1$? $3+1$
(c) Identify graphically, the nature of bifurcation in the system $\dot{x}=\mu-3 x^{2}$, with parameter μ. Find the associated potential function $V(x)$ and plot it for $\mu<0, \mu>0$ and $\mu=0$. $2+2$
(d) For the map $f(x, a)=-(1+a) x+x^{2}$, define the universal constants δ. Given that the renormalisation equation for the bifurcation point a_{k} is $a_{k}=a_{k+1}^{2}+4 a_{k+1}-2$, find the value of δ.
(e) Define similarity dimension of a self-similar fractal set and find the dimension of Cantor set. 4
(f) Consider Lorenz equations

$$
\begin{aligned}
\dot{X} & =-\sigma X+\sigma Y \\
\dot{Y} & =-X Z+r X-Y \\
\dot{Z} & =X Y-b Z
\end{aligned}
$$

Locate the fixed points and show that one of them is stable for $r<1$ and unstable for $r>1.4$
(a) For the linear system $\ddot{x}-x=0$, find an equation for the trajectories and plot the trajectories in the phase plane. Check if the system is a gradient system and find the associated Lyapunov function if any.
(b) For the nonlinear system

$$
\dot{x}=x-y \quad \dot{y}=1-x y
$$

classify the fixed point(s) using the Jacobian matrix (i.e. linearization). Draw the phase portrait schematically.
$(2+2)+(3+3)$
(a) What is a limit cycle ? Explain briefly why limit cycles are observed only in nonlinear systems of order $($ dimension $)>1$.
(b) Make a phase plane analysis of the van der Pol oscillator,

$$
\ddot{x}+\mu\left(x^{2}-1\right) \dot{x}+x=0
$$

in the strong nonlinear limit, $\mu \gg 1$, using the variables,

$$
w=\dot{x}+\mu F(x) \text { and } y=w / \mu, \text { where } F(x)=\int_{0}^{x} d u\left(u^{2}-1\right) .
$$

(c) Plot $x(t)$ as a function of t clearly indicating different time scales.
(d) Estimate the time period of the oscillator.

$$
(1+2)+4+1+2
$$

4. (a) For the following system expressed in polar coordinates,

$$
\dot{r}=r\left(1-r^{2}\right)+\epsilon r \cos \theta \quad \text { and } \quad \dot{\theta}=1
$$

show that a stable limit cycle exists at $r=1$ for $\epsilon=0$.
(b) For positive yet sufficiently small ϵ, find a trapping region in the two dimensional phase plane and hence establish the existence of a closed orbit using Poincare-Bendixson Theorem. Hint : Identify inner and outer radii, r_{1} and r_{2}, of an annular region, such that $\dot{r}>0$ for r_{1} and $\dot{r}<0$ for r_{2}.
(c) For the logistic map $f(x)=r x(1-x)$, locate the 1-cycle fixed points and the 2-cycle fixed points.
5. (a) For Rayleigh-Benard convection, derive the equation for continuity and the equation for heat conduction. Also, write down the Navier-Stokes equation. What is Boussinesq approximation? How are the three equations modified under this approximation?
(b) Describe briefly how a bifurcation occurs in the plot of velocity vs. temperature difference for roll convection.

$$
(2+2+1+2)+3
$$

6. a) Locate and analyse the stability of the fixed points for the map $f(x)=\sin x$.
(b) Consider the Henon map,

$$
\begin{aligned}
x_{n+1} & =2 x_{n}^{2}+2 C x_{n}-y_{n} \\
y_{n+1} & =x_{n}
\end{aligned}
$$ $2+(1+1+6)$

