2021

ADVANCED BUSINESS MATHEMATICS — HONOURS

First Paper

(C-21-A)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Group - A

1. Answer the following questions:

(a) If
$$A = \begin{bmatrix} 6 & 7 & 5 \\ 1 & 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 7 & 5 \\ 4 & 0 & 6 \end{bmatrix}$, then find the matrix $2A - B$.

Or,

Given
$$A = \begin{bmatrix} a & b \\ 1 & 0 \end{bmatrix}$$
 and $AA^T = I_2$, then find a and b .

(b) If
$$f(x) = 2x^2 - 5x + 4$$
, for what value of x is $2f(x) = f(2x)$?

(c) If
$$f(x+3) = 3x^2 - 2x + 5$$
, find $f(x-1)$.

(d) Evaluate:
$$\lim_{x \to 9} \frac{\sqrt{x} - 3}{x - 9}.$$

Or,

A function f(x) is defined as follows:

$$f(x) = 2x - 4$$
 when $x \ge 3$
= 2 when $x < 3$.

Examine whether
$$\lim_{x\to 3} f(x)$$
 exists or not. 2

(e) Integrate (any one):

(i)
$$\int \frac{x}{x-1} dx$$

(ii)
$$\int \frac{1}{2x+1} dx$$
.

Please Turn Over

(2)

Group - B

- **2.** Answer the following :
 - (a) Evaluate *any two*:

(i)
$$\lim_{x\to 0} \frac{\sqrt{x^2 + a} - \sqrt{a - x^2}}{x^2}$$

(ii)
$$\lim_{x \to 4} \left[\frac{1}{x+4} + \frac{8}{x^2 - 16} \right]$$

(iii)
$$\lim_{x \to \infty} \frac{15x^7 + 12x + 17}{5x^7 + 9x^2 + 12}$$

(b) If
$$x\sqrt{1+y} + y\sqrt{1+x} = 0$$
, prove that $\frac{dy}{dx} = \frac{-1}{(1+x^2)}$.

Or.

If
$$x^m y^n = (x + y)^{m+n}$$
, show that $\frac{dy}{dx} = \frac{y}{x}$.

(c) If
$$x + y = 2$$
, show that the maximum value of $\left(\frac{4}{x} + \frac{36}{y}\right)$ is less than its minimum value.

(d) If
$$x + y + z = 0$$
, show that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^3 & y^3 & z^3 \end{vmatrix} = 0$.

(e) Solve the following equations by matrix inverse method:

$$3x - y + 2z = 7$$
, $x + 2y - z = 3$, $x + y + z = 4$.

Group - C

Answer any one question.

3. (a) If
$$f(x) = \log_e \left(\frac{1-x}{1+x} \right)$$
, then prove that $f(a) + f(b) = f\left(\frac{a+b}{1+ab} \right)$.

(b) Find the area bounded by the straight line y = 3x, the x-axis and the ordinates x = 1, x = 2. 4+6

4. (a) Evaluate :
$$\int_{1}^{2} \log x \, dx$$
.

(b) If
$$V = \log \frac{x^3 + y^3}{x^2 + y^2}$$
, then show that $x \frac{\partial V}{\partial x} + y \frac{\partial V}{\partial y} = 1$.