2021

STATISTICS - HONOURS

Second Paper

(Group - A)

Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

(Linear Algebra)

(Marks : 25)
Answer any two from question nos. 1 to 4 and any one from question nos. 5 and 6.

1. Show that $f_{1}(t)=1, f_{2}(t)=t-2$, and $f_{3}(t)=(t-2)^{2}$ form a basis of P_{3}. Express $3 t^{2}-5 t+4$ as a linear combination of f_{1}, f_{2} and f_{3}.
2. If $\underset{\sim}{u}$ and $\underset{\sim}{v}$ are column vectors with n and m components respectively and if $\underset{\sim}{u} \neq \underset{\sim}{0}$, show that there exists an $m \times n$ matrix A such that $A \underset{\sim}{u}=\underset{\sim}{v}$.
3. Prove that a quadratic form $\underset{\sim}{x} A \underset{\sim}{x}$ can be written as the product of two linearly independent linear forms in $\underset{\sim}{x}$ iff A has rank 2 and signature o .
4. Prove the following without expanding the determinant :

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & x & x \\
y z & x z & x y
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & x & x \\
x^{2} & y^{2} & z^{2}
\end{array}\right|
$$

5. (a) Show that a square matrix A is non-singular iff $|A| \neq 0$.
(b) Solve the following system using Cramer's rule :

$$
\begin{gathered}
2 x_{1}-x_{2}+x_{3}=-3 \\
x_{1}+x_{2}-3 x_{3}=17 \\
5 x_{1}-2 x_{2}-4 x_{3}=20
\end{gathered}
$$

(c) Using Cramer's rule, find the value of x_{4} in the solution of $A \underset{\sim}{x}=\underset{\sim}{b}$, where

$$
A=\left|\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
3 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
-2 & 3 & 1 & 3
\end{array}\right| \text { and } \underset{\sim}{b}=(2,4,-1,-4)^{1}
$$

6. (a) If A is a n.n.d. matrix of order n with rank r and if $k \geq r$, prove that there exists an $n \times k$ matrix C such that $A=C C^{\prime}$.
(b) Prove that every square matrix is a product of triangular matrices.

(Population Statistics)

(Marks : 25)
Answer any two from question nos. 7 to 10 and any one from question nos. 11 and 12.
7. Explain the purpose and procedure for standardizing death rates.
8. Define force of mortality. If $\mu_{x}=A+B C^{x}$, find the expression for l_{x}.
9. Differentiate between population projection and population estimation.
10. Define NRR and GRR. Why is GRR considered as the upper limit of NRR?
11. Derive the equation to a logistic curve stating clearly all the assumptions. Find the estimates of the concerned parameters. How are they obtained using the decennial population data of a country? Is this curve suitable for representing the growth of Indian population? $5+5+3+2$
12. (a) Describe the various components of an abridged life table stating the interrelations between them.
(b) Prove that :
(i) ${ }_{n} q_{x}=\frac{d_{n+x-1}}{l_{x}}$
(ii) $p_{x}=\frac{e_{x}}{1+e_{x+1}}$.

