2021

ECONOMICS - HONOURS

Paper : DSE-A-1

(Applied Econometrics)

Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

Group - A

1. Answer any five questions:
(a) The plot of data on the output (X) and the labour input (L) for a period of 20 years in a country exhibits a non-linear relationship where X has been rising faster than L.
Suggest a possible functional form of the relationship and transform it into a linear regression model.
(b) In the multiple linear regression model, what is meant by the following key assumption -
$E\left(u_{i} / x_{1}, x_{2}, \ldots . ., x_{k}\right)=0$
(c) The following model, $y_{i}=\beta_{1}+\beta_{2} x_{i}+u_{i}$
satisfies all the usual assumptions of the classical Linear Regression model except for the following :

$$
E\left(u_{i}^{2}\right)=\sigma^{2} x_{i}^{2} .
$$

Identify the problem and transform the original model so as to remove the problem.
(d) What are instrumental or proxy variables?
(e) What are the consequences of model specification error(s) when a relevant variable is omitted?
(f) How can you detect the presence of irrelevant variable in a regression model?
(g) What is non-stationary time series data?
(h) What are the assumptions of the fixed effect model?

Group - B

2. Answer any two questions:
(a) (i) Why is adjusted R^{2} useful in a regression model with multiple regressors?
(ii) The following results are obtained by OLS regression using quarterly data for 1960 to 1979 inclusive.

$$
\hat{y}_{t}=2 \cdot 20+0 \cdot 18 x_{1 t}+2.54 x_{2 t}
$$

where the explained sum of squares $=112.5$
and the residual sum of squares $=19.5$
Compute R^{2} and interpret the result. Find the value of \bar{R}^{2}.
(b) Consider the following model :

$$
\begin{aligned}
C=\alpha+\beta Y & +\gamma Y^{\prime}+\delta P+u \\
\text { Where } \quad \mathrm{C} & =\text { Consumption of a person } \\
& Y=\text { Total income of the family } \\
& Y^{\prime}=\text { Income of that person } \\
& P=\text { WPI. }
\end{aligned}
$$

Do you face any problem in estimating the parameters of the model? If any what are the consequences of the problem?
$11 / 2+3^{1 / 2}$
(c) Given the following estimated regression equation -

$$
\begin{array}{r}
\hat{y}=2.3+1.5 \quad X \\
(\text { s.e }=0.5)
\end{array}
$$

where $r^{2}=0.5, \bar{x}=10, \bar{y}=15, \Sigma y^{2}=6895$
Find the sample size and RSS.
(d) Two researchers fit two different models to the same set of 1095 observations -

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+u \ldots \ldots . . \text { Model } 1
$$

and $y=\alpha_{0}+\alpha_{1} x_{1}+\alpha_{2} x_{2}+v$...... Model 2.
R^{2} from Model $1=0.0387$ and R^{2} from Model $2=0.0364$.
Using the above information, suggest an appropriate test to choose from the above models, explaining each step of the testing process.

$$
\text { given } F_{0.05}(2,1090)=3 \cdot 0
$$

Group - C

3. Answer any three questions :
(a) The following data are obtained from 10 observations on y, x_{1} and x_{2}
$\Sigma y=20 ; \quad \Sigma x_{1}=30 ; \quad \Sigma x_{2}=40$
$\Sigma y^{2}=88 \cdot 2 ; \quad \Sigma x_{1}{ }^{2}=92 ; \quad \Sigma x_{2}{ }^{2}=163$
$\Sigma y x_{1}=59 ; \quad \Sigma y x_{2}=88 ; \quad \Sigma x_{1} x_{2}=119$.
Estimate the regression of y on x_{1} and x_{2} and find R^{2}.
(b) (i) In the context of multiple linear regression model like $y_{i}=\alpha+\beta_{1} x_{1 i}+\beta_{2} x_{2 i}+u_{i}$ Distinguish between simple correlation coefficient and the partial correlation coefficients.
(ii) How do you reconcile the following results?
(1) $r^{2}{ }_{y 1}=0.95$ and $r^{2}{ }_{y 2}=0.98$
but $r_{y 1 \cdot 2}^{2}=0.12$ and $r^{2}{ }_{y 2 \cdot 1}=0.14$
and (2) $r_{y 1}=0$ but $r_{y 1 \cdot 2} \neq 0$
where the notations have their usual meanings.
$5+2^{1 / 2}+2^{1 / 2}$
(c) (i) What are the common types of specification errors committed in developing an empirical model?
(ii) Do you think that examinations of residuals obtained from regression can guide us for model specification error?
(iii) Consider the model
$y_{i}=\beta_{1}+\beta_{2} x_{i}{ }^{*}+u_{i}$
In practice, $x_{i}{ }^{*}$ is measured by x_{i} such that $x_{i}=x_{i}{ }^{*}+\epsilon_{i}$
where ϵ_{i} is a purely random term with usual properties. How does it affect the estimates of β_{1}, and β_{2} ?
$2+3+5$
(d) The following table shows the value of imports (Y) the level of GNP $\left(X_{1}\right)$ measured in Rs. in lakhs and the price index of imported goods (X_{3}) over the 12 years for a certain country.

		2008	2009	2010	2011	2012	2013	2014	2015
Y	$:$	57	43	73	37	64	48	56	50
X_{1}	$:$	220	215	250	241	305	258	354	321
X_{2}	$:$	125	147	118	100	128	149	145	150
		2016	2017	2018	2019				
Y	$:$	39	43	69	60				
X_{1}	$:$	370	375	385	385				
X_{2}	$:$	140	115	155	152				

(i) Estimate the regression equation and what are the economic meaning of your estimates?
(ii) Compute R^{2} and adjusted R^{2}.
(e) Fit a straight line trend to the following figures of consumption and Income :

Year	Consumption $(1000$ tonnes)	Income (₹. in Lakh)
1990	59.19	76.20
1991	65.49	91.70
1992	62.36	106.70
1993	64.70	111.60
1994	67.40	119.00
1995	68.00	129.20
1996	72.40	143.40
1997	70.68	159.60
1998		190.00
1999		193.00

