M. Sc (Physics) 4th Semester Examination 2019
 PHY 522 : Particle Physics

Answer in your own words as far as practicable. The marks on the right hand side denote the full marks for the respective questions.

Full Marks : 50
Answer Question No. 1, and any three from the rest.

1. Answer any five:

Time: 2 Hours
(a) Consider the $S U(2)$ gauge invariant Lagrangian

$$
\mathcal{L}=\frac{1}{2}\left(D_{\mu} \Phi\right)^{T}\left(D_{\mu} \Phi\right)-V(\Phi)-\frac{1}{4} F_{\mu \nu}^{a} F_{a}^{\mu \nu}
$$

where Φ is a triplet of real scalar fields and other symbols have their usual meanings. The minimum of $V(\Phi)$ is $\langle\Phi\rangle=\left(\begin{array}{lll}0 & 0 & v\end{array}\right)^{T}$, leading to SSB. Given the $S U(2)$ generators $\left(T^{a}\right)_{b c}=-i \epsilon_{a b c}$, show that two of the gauge bosons become massive while one stays massless.
(b) For what limiting value of ξ does the R_{ξ} gauge propagator

$$
D_{\mu \nu}(k)=-\frac{1}{k^{2}-M^{2}}\left[g_{\mu \nu}-\frac{(1-\xi) k_{\mu} k_{\nu}}{k^{2}-\xi M^{2}}\right]
$$

for the massive gauge boson reduce to the unitary gauge propagator? Write down the expression for the latter. Why the R_{ξ} gauge propagator is suitable for proving renormalizability but the unitary gauge propagator is not?
(c) Draw all the Feynman diagrams contributing to $e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}$. Why can the Higgs-mediated diagram be neglected? Define forward-backward asymmetry in terms of the differential scattering cross-section (no calculation is needed). Which diagram gives rise to the forward-backward asymmetry?
(d) Given that the π-mesons have intrinsic parity -1 , calculate the $C P$ quantum numbers for $\pi^{+} \pi^{-}$and $\pi^{+} \pi^{-} \pi^{0}$ systems for zero angular momentum.
(e) Show that quark-parton model predicts the ratio $F_{2}^{e p} / F_{2}^{e n} \rightarrow 1$ when sea quark contribution dominates over valence quark contribution inside a proton. While in the case of valence quark dominance, $F_{2}^{e p} / F_{2}^{e n} \rightarrow 0.25$.
(f) Calculate the center-of-mass energies of (i) an $e^{+} e^{-}$collider in which e^{+}and e^{-}collide head on with energies 1 TeV and 0.5 TeV respectively (ii) an $e^{-} p$ collider with e^{-}energy of 1 TeV and a proton target at rest. You may use $m_{p} \simeq 1 \mathrm{GeV}$.
2. (a) Draw the Feynman digram and write down the invariant matrix clement for the decay $\pi^{-}(q) \rightarrow \mu^{-}(p) \bar{\nu}_{\mu}(k)$. What is the corresponding Lagrangian? Show that $\overline{|\mathcal{M}|^{2}}=4 G_{F}^{2} f_{\pi}^{2} m_{\mu}^{2}(p \cdot k)$ if the neutrino is massless. Express $p \cdot k$ in terms of the pion and muon masses.
(b) Use helicity argument to conclude that a neutral pion cammot decay into a neutrino and an anti-neutrino in the Standard Model.

$$
[(2+1+4+1)+2]
$$

3. (a) In the GWS model. consider the part $\mathcal{L}=\Psi_{L} i \gamma^{\mu} D_{\mu} \Psi_{L}+\bar{e}_{R} i \gamma^{\mu} D_{\mu} e_{R}$, where $\Psi_{L}=\left(\nu_{L} e_{L}\right)^{T}$. Give the expressions for $D_{\mu} \Psi_{L}$ and $D_{\mu} e_{R}$. Extract the interaction of the electron with the photon, given $Z_{\mu}=\cos \theta_{W} W_{\mu}^{3}-\sin \theta_{W} B_{\mu}, A_{\mu}=\sin \theta_{W} W_{\mu}^{3}+$ $\cos \theta_{W} B_{\mu}$ and $\tan \theta_{W}=g^{\prime} / g$. Hence relate the electromagnetic coupling e to g and θ_{W}.
(b) Consider the potential $V(\Phi)=\mu^{2} \Phi^{\dagger} \Phi+\lambda\left(\Phi^{\dagger} \Phi\right)^{2}$, where $\mu^{2}<0, \lambda>0$ and Φ is the $S U(2)$ complex Higgs doublet. If $\Phi=\left(\begin{array}{l}0 \\ v\end{array}+H(x)\right)^{T}$, find the VEV v and the mass of the Higgs field $H(x)$.
4. (a) Why does ν_{e} interact differently from ν_{μ} and ν_{τ} when neutrinos pass through normal matter? (Give Feynman diagrams, but amplitudes are not needed.)
(b) The $v_{e} \rightarrow v_{\mu}$ oscillation probability in vacuum is given by $P=\sin ^{2}\left(\Delta m^{2} L / 4 E\right)$ in natural units for the mixing angle $\theta=\pi / 4$. This changes to $P=\sin ^{2}\left(C \Delta m^{2} L / E\right)$ when Δm^{2} is in $\mathrm{eV}^{-2} . L$ is in $K m$ and E is in $G e V$. Find the numerical constant C., given $h c=200 \mathrm{MeV} \mathrm{fm}$.
(c) Show that the mass term in the Dirac Lagrangian for an electron $\mathcal{L}_{\text {mass }}=$ $m_{e}\left(\bar{\epsilon}_{L} \epsilon_{R}+\bar{\epsilon}_{R} \epsilon_{L}\right)$ does not respect $S U(2)_{L} \times U(1)_{Y}$ gauge symmetry of the SM. Verify that the term $\lambda\left(\bar{L} \Phi e_{R}+H . c\right)$ is gauge invariant. Here, Φ is the SM Higgs (doublet) field. $L \equiv\binom{\nu_{e L}}{\epsilon_{L}}$ and e_{R} are an $S U(2)$ doublet and singlet respectively.
$[2+3+(2+3)]$
5. (a) Show that mean square radius $\left\langle r^{2}\right\rangle$, of a spherically symmetric charge distribution for small values of momentum transfer, is given by $-6 \frac{\partial F(q)}{\partial q^{2}}$. Here $F(q)$ is the form factor of the charge distribution and $F(q) \equiv \int \rho(\bar{r}) e^{i \bar{q} \cdot \bar{r}} d^{3} \bar{r}$.
(b) Write down the relation, in the parton model, between the parton distribution functions and the structure functions F_{1} and F_{2} used to describe deep inelastic electron proton scattering. Establish a relation between F_{1} and F_{2}.
(c) Show that the experimental data on $F_{2}\left(\int F_{2}^{e p}(x) d x=0.18\right.$ and $\left.\int F_{2}^{e n}(x) d x=0.12\right)$ indicates that the valence quarks inside a nucleon carry only half of nucleon's momentum.
$[3+3+4]$ oss matrices in the flavour basis?
(b) Explain how does the unitarity of $V_{C K M}$ lead to so called Unitarity triangles in (c) Show that the Z-boson or photon interaction with quarks cannot change the

$$
|3+(2+2)+3|
$$

