2021

PHYSICS — HONOURS

Paper: CC-1

(Mathematical Physics - I)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:

 2×5

- (a) Evaluate $\lim_{x\to\infty} (1+ax)e^{-bx}$; a,b>0.
- (b) Show that (y + z) dx + x dy + x dz is an exact differential.
- (c) Check whether the three vectors $(\hat{i} + \hat{j}), (\hat{i} \hat{j})$ and $(\hat{j} \hat{k})$ are linearly independent.
- (d) Given $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\vec{F} = x^3y\hat{i} + y^2\hat{j} + x^2z\hat{k}$.

Calculate $(\vec{r}.\vec{\nabla})\vec{F}$.

- (e) Show that the area bounded by a simple closed curve c lying in x-y plane is given by $\frac{1}{2} \oint_c (x \, dy y \, dx).$
- (f) Given a unitary matrix U, show that $U^{-1}HU$ is Hermitian if H is a Hermitian matrix.
- (g) Find a symmetric matrix S such that $Q = X^T S X$ where $Q = x_1^2 + 2x_1x_2 3x_2^2$ and $X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
- 2. (a) Show that $\delta z = x \, dy (y x^2) \, dx$ is an inexact differential. Find a suitable integrating factor to make the equation exact.
 - (b) Find the particular integral of $\frac{d^2y}{dx^2} 5\frac{dy}{dx} + 6y = e^x \sin x$.
 - (c) Find the coefficient of x^3 in the Taylor series expansion of $e^x \sin x$ about x = 0.

Or,

V(1st Sm.)-Physics-H/CC-1/CBCS

(2)

- (c) For what values of x the series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ converges? (For Syllabus : 2018-2019)
- 3. (a) Using the concept of Wronskian, show that the functions 1, x and $\sin x$ are linearly independent.
 - (b) Show, using Lagrange's undetermined multipliers, that the axes of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ can be obtained by finding the maximum and minimum distance of a point on the ellipse to its centre.
 - (c) If $z = \sin\left(\frac{x}{y}\right)$, compute $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$.
 - (d) Show that $(A_y B_x A_x B_y)$ transforms as a scalar under rotation in the x-y plane, where $\vec{A} = A_x \hat{i} + A_y \hat{j}$ and $\vec{B} = B_x \hat{i} + B_y \hat{j}$.
- **4.** (a) If the magnitude of a vector $\vec{A}(t)$ is constant with respect to time t, show that $\frac{d\vec{A}}{dt}$ is perpendicular to \vec{A} .
 - (b) Find the unit normal to the surface $\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{16} = 1$ at $(\sqrt{2}, 0, 2\sqrt{2})$. Find the equation of tangent plane to the surface at the given point.
 - (c) Find the potential $\phi(x, y, z)$ for $\vec{F} = \left(3x^2yz + y + 5\right)\hat{i} + \left(x^3z + x z\right)\hat{j} + \left(x^3y y + 7\right)\hat{k}$, which has the value 10 at the origin. 1+(3+2)+4
- **5.** (a) Compute $\iint_S \vec{F} \cdot d\vec{s}$ over the surfaces S_1 and S_2 , where $\vec{F} = x\hat{i} + y\hat{j} + z\hat{k}$.

- (b) What do you mean by orthogonal curvilinear coordinate system? Find the unit vectors of the spherical polar coordinate system in terms of \hat{i} , \hat{j} and \hat{k} .
- (c) Use Gauss' theorem to convert the volume integral $\iiint_V (\phi \nabla^2 \psi + \vec{\nabla} \phi \cdot \vec{\nabla} \psi) dV$ to a surface integral over the boundary enclosing V. Here $\phi(x, y, z)$ and $\psi(x, y, z)$ are two scalar fields. 3+4+3
- **6.** (a) Show that the eigenvalues λ of a two-dimensional invertible real-valued matrix A obeying $A^{-1} = A^{\dagger}$ satisfy $|\lambda|^2 = 1$.
 - (b) Show that if B is an invertible matrix, then $B^{-1}e^AB = e^{B^{-1}AB}$
 - (c) Solve the system of equations by Matrix method

$$\frac{dy}{dt} = z$$

$$\frac{dz}{dt} = -y$$

with initial conditions y(0) = 1 and $\dot{y}(0) = 0$.

3+3+4

- 7. (a) Let a unitary matrix U can be written as U = A + iB, where A and B are Hermitian matrices having non-degenerate eigenvalues. Show that $A^2 + B^2 = I$.
 - (b) Show that for a 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, det $A = \frac{1}{2} \left[(Tr A)^2 Tr (A^2) \right]$, where Tr represents trace.
 - (c) If a matrix $A = \begin{pmatrix} a & h \\ h & b \end{pmatrix}$ is transformed to the diagonal form $B = UAU^{-1}$ where $U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$,

show that $\theta = \frac{1}{2} \tan^{-1} \left(\frac{2h}{a-b} \right)$.

3+3+4