2021

PHYSICS - HONOURS

Paper: CC-1

(Mathematical Physics - I)

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions :
(a) Evaluate $\lim _{x \rightarrow \infty}(1+a x) e^{-b x} ; a, b>0$.
(b) Show that $(y+z) d x+x d y+x d z$ is an exact differential.
(c) Check whether the three vectors $(\hat{i}+\hat{j}),(\hat{i}-\hat{j})$ and $(\hat{j}-\hat{k})$ are linearly independent.
(d) Given $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{F}=x^{3} y \hat{i}+y^{2} \hat{j}+x^{2} z \hat{k}$.

Calculate $(\vec{r}, \vec{\nabla}) \vec{F}$.
(e) Show that the area bounded by a simple closed curve c lying in $x-y$ plane is given by $\frac{1}{2} \oint_{c}(x d y-y d x)$.
(f) Given a unitary matrix U, show that $U^{-1} H U$ is Hermitian if H is a Hermitian matrix.
(g) Find a symmetric matrix S such that $Q=X^{T} S X$ where $Q=x_{1}^{2}+2 x_{1} x_{2}-3 x_{2}^{2}$ and $X=\binom{x_{1}}{x_{2}}$.
2. (a) Show that $\delta z=x d y-\left(y-x^{2}\right) d x$ is an inexact differential. Find a suitable integrating factor to make the equation exact.
(b) Find the particular integral of $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=e^{x} \sin x$.
(c) Find the coefficient of x^{3} in the Taylor series expansion of $e^{x} \sin x$ about $x=0$.
(c) For what values of x the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$ converges? (For Syllabus : 2018-2019)
3. (a) Using the concept of Wronskian, show that the functions $1, x$ and $\sin x$ are linearly independent.
(b) Show, using Lagrange's undetermined multipliers, that the axes of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ can be obtained by finding the maximum and minimum distance of a point on the ellipse to its centre.
(c) If $z=\sin \left(\frac{x}{y}\right)$, compute $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$.
(d) Show that $\left(A_{y} B_{x}-A_{x} B_{y}\right)$ transforms as a scalar under rotation in the $x-y$ plane, where $\vec{A}=A_{x} \hat{i}+A_{y} \hat{j}$ and $\vec{B}=B_{x} \hat{i}+B_{y} \hat{j}$.
4. (a) If the magnitude of a vector $\vec{A}(t)$ is constant with respect to time t, show that $\frac{d \vec{A}}{d t}$ is perpendicular to \vec{A}.
(b) Find the unit normal to the surface $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{16}=1$ at $(\sqrt{2}, 0,2 \sqrt{2})$. Find the equation of tangent plane to the surface at the given point.
(c) Find the potential $\phi(x, y, z)$ for $\vec{F}=\left(3 x^{2} y z+y+5\right) \hat{i}+\left(x^{3} z+x-z\right) \hat{j}+\left(x^{3} y-y+7\right) \hat{k}$,
which has the value 10 at the origin.
5. (a) Compute $\iint_{S} \vec{F} . d \vec{s}$ over the surfaces S_{1} and S_{2}, where $\vec{F}=x \hat{i}+y \hat{j}+z \hat{k}$.

(b) What do you mean by orthogonal curvilinear coordinate system? Find the unit vectors of the spherical polar coordinate system in terms of \hat{i}, \hat{j} and \hat{k}.
(c) Use Gauss' theorem to convert the volume integral $\iiint_{V}\left(\phi \nabla^{2} \psi+\vec{\nabla} \phi . \vec{\nabla} \psi\right) d V$ to a surface integral over the boundary enclosing V. Here $\phi(x, y, z)$ and $\psi(x, y, z)$ are two scalar fields. $\quad 3+4+3$
6. (a) Show that the eigenvalues λ of a two-dimensional invertible real-valued matrix A obeying $A^{-1}=A^{\dagger}$ satisfy $|\lambda|^{2}=1$.
(b) Show that if B is an invertible matrix, then $B^{-1} e^{A} B=e^{B^{-1} A B}$
(c) Solve the system of equations by Matrix method

$$
\begin{aligned}
& \frac{d y}{d t}=z \\
& \frac{d z}{d t}=-y
\end{aligned}
$$

with initial conditions $y(0)=1$ and $\dot{y}(0)=0$.
7. (a) Let a unitary matrix U can be written as $U=A+i B$, where A and B are Hermitian matrices having non-degenerate eigenvalues. Show that $A^{2}+B^{2}=I$.
(b) Show that for a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, $\operatorname{det} A=\frac{1}{2}\left[(\operatorname{Tr} A)^{2}-\operatorname{Tr}\left(A^{2}\right)\right]$, where Tr represents trace.
(c) If a matrix $A=\left(\begin{array}{ll}a & h \\ h & b\end{array}\right)$ is transformed to the diagonal form $B=U A U^{-1}$ where $U=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$, show that $\theta=\frac{1}{2} \tan ^{-1}\left(\frac{2 h}{a-b}\right)$.

