Gurudas College (CU) Internal Examination 2020 B.Sc Semester –II Physics Hons (PHSA) Practical Paper – CC4

Full Marks: 15

Time: 1 Hour

Answer *any one question* from below.

- 1. To determine the frequency of electrically maintained tuning fork by means of Melde's apparatus in transverse mode of vibration.
 - a) Working formula.
 - b) Data for transverse mode of vibration.

Total mass M (gm)	No. of loops (p)	Loop length (l) cm
50	5	75
	4	60
55	5	80
	4	64
60	5	85
	4	68

i) Construct table for λ^2 -T graph where λ =21/p and T=Mg tension.

ii) Plot λ^2 -T graph.

iii) Calculate frequency from the graph.

5

6

2

- Determination of radius of curvature of the lower surface of a plano convex lens using Newton's ring apparatus.
 - a) Working Formula.
 - b) Table for determination of diameter D of the Newton's rings for different order.

Ring number	Reading of the microscope for the		
	Left end of the ring (cm)	Right end of the ring (cm)	
P+21	3.64	3.07	
P+15	3.60	3.15	
P+9	3.55	3.19	
P+3	3.46	3.22	

- i) Construct table to plot D^2 verses ring number plot.
- ii) Plot D^2 verses ring number.
- iii) Calculate the radius of curvature of the plano convex lens. (given wavelength of the source light, λ =5893 A^O) 2
- 3. To draw curve connecting refractive index μ of a given material of a prism verses $(1/\lambda^2)$ for lights of known wavelengths (λ) to verify Cauchy's formula $\mu=a+b/\lambda^2$ and to determine the constants a and b.
 - a) Working formula to find refractive index.
 - b) Table for minimum deviation for known wavelengths.

Color of light	Wavelengths λ (nm)	Minimum deviations
Red	623	48 ⁰ 43'
Yellow	579	49 ⁰ 09'
Green	546	49 ⁰ 32'
Blue	436	51 ⁰ 23'

- i) Construct table for refractive index μ verses $1/\lambda^2$ plot. (Angle of prism A=60°)
- ii) Plot refractive index μ verses $1/\lambda^2$ and comment on verification of Cauchy's formula $$5{+}1$$
- iii) Calculate a and b constants of Cauchy's formula from the graph.

2

6

5

2

5

2