2021

STATISTICS - HONOURS
 Paper : CC-7
 (Statistical Computing and Numerical Analysis using C Programming)

Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Group - A

Answer any five from question nos. 1-8.

1. If Φ is an operator such that $\Phi f(x)=f(x-h)-f(x)$, find a relation between E and Φ operators, h being the interval of differencing.
2. If 29.8756 is rounded to 29.876 find the relative error.
3. Give the structure of a binary operator in C.
4. Which of the following are valid identifiers : (i) \&stat (ii) st@at ?
5. If a number x is rounded to four decimal points giving percentage error of $.002 \%$, what is the absolute error?
6. Distinguish between C relational and logical operators.
7. What operation is performed by the C statement $+a=a$;?
8. Give an example of an exit-controlled loop and give the structure.

Group - B

Answer any two from question nos. 9-11.
9. If $\left.x^{(k)}=x(x-1)(x-2) \ldots(x-\overline{\{k-1}\}\right)$, find $\Delta^{2} x^{(k)}$.
10. Approximate $\int_{0}^{2} f(x) d x$ by Simpson's $1 / 3$ rd rule with 6 equispaced subdivisions. Give an example and compute the related absolute error.
11. Write a program in C to find the mean of real number inputs lying between $-1 / 2$ and 0 , both inclusive.

Group - C

Answer any three from question nos. 12-16.
12. (a) Write a C function to calculate the sum of squares of 1000 numbers using do-while looping structure.
(b) Prove that the second order difference of a polynomial of degree 7 is itself a polynomial of degree 5 . 6+4
13. (a) Write a C program to sort any given set of 5 numbers using a function with array as argument.
(b) If the values of $f(x)$ for $x=1,2,3,4$ are respectively, 14, 23, 23.7, 16.7, construct a backward diagonal difference table.
14. (a) Write a program in C to find the roll number of the candidate getting the highest marks when roll numbers (from 1 to 10) and the corresponding marks are provided.
(b) Write down the Lagrange's interpolation formula for $\mathrm{n}+1$ arguments $x_{i}, i=0,1, \ldots, n$, in the form $\sum_{i=0}^{n} L_{i}(x) f\left(x_{i}\right)$ for some $L_{i}(x)$. Show that $\sum L_{i}(x)=1$.
15. (a) Write a program in C to find the proportion of the students with marks in the interval [70, 75], when the marks of 10 students in a class are provided.
(b) Describe how Lagrange's interpolation formula can be used to find the approximate root of a given equation with single unknown.
16. (a) Find the iterative methods based on the Newton-Raphson method for finding $\log _{5} N$, where N is a positive real number.
(b) Write a program in C that will return the values of $f(x)=x /(1+x)^{3}, 0<x<1$ when referenced in the main function. Now, within the main function calculate 50 values of $f(x)$ corresponding to 50 equally spaced values of x and hence find the approximate area of the region enclosed by $y=f(x), x=0$ and $x=1$.

