T(II)-Statistics – G-2

2021

STATISTICS — GENERAL

Second Paper

Full Marks : 100

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Group - A

Marks : 50

Answer question no. 1 and any three questions from the rest.

1. Answer *any four* from the following questions :

- (a) Distinguish between parameter and statistic.
- (b) What is 'power' in hypothesis testing?

(c) If x_1 , x_2 , x_3 and iid N(0,1) variates, then write down the pdf of $T = \frac{x_1\sqrt{2}}{\sqrt{x_2^2 + x_3^2}}$.

- (d) If $F \sim F_{n_1, n_2}$, what will be the distribution of $F' = \frac{1}{F}$?
- (e) If $x \sim Bin(1, p)$, find an unbiased estimator for p^2 .
- (f) Write down the $100(1-\alpha)$ % confidence interval for variance under normal set up with known mean.
- (g) Write down the simplified form of the Pearsonian Chi-square statistic for testing independence of two attributes in 2×2 contingency table.
- (h) If θ is a parameter and T is an estimator such that $E(T) = \frac{\theta}{2}$, suggest an unbiased estimator of θ and another biased estimator based on T.

2. (a) Let $X_1, X_2, ..., X_n$ be a random sample of size *n* from $N(\mu, \sigma^2)$ distribution. Find the sampling

distribution of
$$\sum_{i=1}^{n} (X_i - \overline{X})^2$$
, where $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

(b) If
$$S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2$$
, show that S^2 is not an unbiased estimator of σ^2 . 10+4

Please Turn Over

 2×4

T(II)-Statistics – G-2

- 3. Let x_1, x_2, \dots, x_n be a random sample of *n* observations from $N(\mu, \sigma^2)$. Examine the unbiasedness and consistency of the sample mean as an estimator of µ. Derive the maximum likelihood estimators for μ and σ^2 . 4 + 4 + 6
- 4. (a) Derive a suitable test for testing $H_0: \mu_1 = \mu_2$ against all possible alternatives for two independent normal populations $N(\mu_1, 3^2)$ and $N(\mu_2, 2^2)$.
 - (b) Under the above set up, obtain a $100(1 \alpha)\%$ confidence interval of $(\mu_1 \mu_2)$. 8+6
- 5. (a) Obtain the mean and variance of Chi-square distribution with *m* degrees of freedom.
 - (b) Describe the use of Pearsonian Chi-square statistic in testing for goodness of fit. (4+4)+6
- 6. (a) Define type-I error and type-II error in context of testing of hypothesis. Let p be the probability that

a coin will fall head in a single toss. In order to test $H_0: p = \frac{1}{2}$ against $H_1: p = \frac{2}{3}$, the coin is tossed 5 times and H₀ is rejected if more than 3 heads are obtained. Find the probabilities of type-I and type-II errors.

- (b) Describe the method of moments in estimation of parameters. (2+2+3+3)+4
- 7. Write short notes on *any two* of the following :
 - (a) F distribution
 - (b) Properties of ML estimator
 - (c) Large sample test for equality of proportions of successes for two independent binomial populations.

Group - B

Marks : 50

Answer question no. 8 and any three questions from the rest.

- 8. Answer any four from the following questions :
 - (a) Distinguish between defect and defective.
 - (b) What do you mean by 'rational subgroup'?
 - (c) Define the curtate expectation of life.
 - (d) What is the crude rate of natural increase?
 - (e) Define Chain index number.
 - (f) What do you mean by price relative?
 - (g) What do you mean by cyclical variations?
 - (h) Is Infant Mortality Rate (IMR) a probability rate in the true sense? Give reasons.
- 9. (a) Define GRR and NRR. Discuss how good they are as indices of population growth.
 - (b) What do you understand by it : 'The NRR for a Country is 1.327'?

 2×4

7×2

(6+4)+4

- 10. (a) Describe how you would fit
 - (i) a linear trend;
 - (ii) an exponential trend to time series data using the method of least squares.
 - (b) Discuss the ratio-to-trend method for determining seasonal indices for monthly data. (4+4)+6
- 11. (a) What are Marshall-Edgeworth, Laspeyres' and Paasche's index numbers? Prove that the Marshall-Edgeworth index number lies between Laspeyres' and Paasche's index numbers.
 - (b) Discuss some uses of price index numbers.
- 12. (a) Explain the term : 3σ limits.
 - (b) Give some examples of defects for which the C-chart is applicable.
 - (c) How do you calculate control limits for a C-chart?
- 13. (a) Define 'Crude death rate' and 'Standardized death rate'.
 - (b) Explain why STDR's are computed, instead of CDRs, to compare the mortality situations of two different communities.
 - (c) What do you mean by 'Cost of living index number' and 'Consumers price index number'?

4+6+4

(3+5)+6

4+4+6

- 14. Answer any two questions :
 - (a) Write short note on Rational subgroup.
 - (b) Explain the usefulness of R-chart.
 - (c) Describe the different components of a complete life table.

7×2