2021

STATISTICS - HONOURS

Paper : CC-5

(Linear Algebra)

Full Marks : 50
The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

 as far as practicable.1. Answer any five questions:
(a) Find the value of the determinant in terms of cube root of unity ω

$$
\left|\begin{array}{lll}
a & b & c \\
c & a & b \\
b & c & a
\end{array}\right|
$$

(b) For an idempotent matrix A of order n, show that $\operatorname{Rank}(\mathrm{A})=\operatorname{trace}(\mathrm{A})$.
(c) For an elementary matrix E and a non-singular matrix A, show that $|E A|=|E||A|$.
(d) Let $V=\mathbb{R}^{n}$ with $n=3, \mathbb{F}=\mathbb{R}$, then show that $W=\left\{\left(x_{1}, x_{2}, x_{3}\right)^{\prime}: \sqrt{2} x_{1}=\sqrt{3} x_{2}\right\}$ is a subspace of V on \mathbb{F}.
(e) What is Caley Hamilton theorem?
(f) Express A^{3} in terms of A^{2}, A and I_{2} where $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]$.
(g) For any square matrix A, prove or $\operatorname{disprove} \operatorname{Rank}\left(A^{2}\right)+\operatorname{Rank}\left(A^{4}\right)=2 \operatorname{Rank}\left(A^{3}\right)$.
(h) Let λ be an eigenvalue of a non-singular matrix A, show that $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.
2. Answer any two questions:
(a) State and prove a necessary and sufficient condition for a square matrix to be idempotent.
(b) Let $V=\mathbb{R}^{3}$ with $n=3, \mathbb{F}=\mathbb{R}, \underline{\boldsymbol{x}}_{1}=(-2,4,3)^{\prime}$ and $\underline{\boldsymbol{x}}_{2}=(1,3,2)^{\prime}$. Show that the vector sub space spanned by $\left\{\underline{\boldsymbol{x}}_{1}, \underline{\boldsymbol{x}}_{2}\right\}$ is
$\left[\left\{\underline{\boldsymbol{x}}_{1}, \underline{\boldsymbol{x}}_{2}\right\}\right]=\{(\alpha, \beta,-(\alpha+7 \beta) / 10): \alpha, \beta \in \pi\}$
(c) For any two matrices A and B of orders $m \times n$ and $n \times p$, show that Rank (AB) $\leq \min$ (Rank (A), Rank (B)). Hence show that rank of a matrix does not change by pre or post multiplication by a triangualr matrix with positive diagonal elements.
3. Answer any three questions:
(a) (i) If A and B are two non-singular matrices possibly of different orders, then $(A+C B D)$ is invertible if and only if $\left(B^{-1}+D A^{-1} C\right)$. is non-singular and in that case

$$
(A+C B D)^{-1}=A^{-1}-A^{-1} C\left(B^{-1}+D A^{-1} C\right) D A^{-1}
$$

(ii) Use the above result to find the inverse of the matrix

$$
M=\left(\begin{array}{cccc}
\alpha_{1}^{2}+1 & \alpha_{1} \alpha_{2} & \alpha_{1} \alpha_{3} \ldots \alpha_{1} \alpha_{n} \\
\alpha_{2} \alpha_{1} & \alpha_{2}^{2}+1 & \alpha_{2} \alpha_{3} \ldots \alpha_{2} \alpha_{n} \\
\vdots & \vdots & \vdots & \vdots \\
\alpha_{n} \alpha_{1} & \alpha_{n} \alpha_{2} & \alpha_{n} \alpha_{3} \ldots \alpha_{n}^{2}+1
\end{array}\right)
$$

(b) If A and B are non-negative definite (n.n.d.), then show that $\operatorname{diag}(A, B)$ is n.n.d. If A is positive definite and B is negative definite, what can be said about diag (A, B) ?
(c) (i) Show that any square matrix A is of full rank iff $|A| \neq 0$.
(ii) Show that every skew symmetric matrix of odd order is singular.
(d) Find row space $\mathscr{R}(A)$ and column space $\mathscr{C}(A)$ of the matrix A where

$$
A=\left[\begin{array}{cccc}
4 & 1 & 6 & 0 \\
0 & 1 & 2 & -4 \\
1 & 0 & 1 & 1
\end{array}\right]
$$

Also find a basis of $\mathscr{R}(A)$ and a basis of $\mathscr{C}(A)$.
(e) (i) Find eigenvalues of a idempotent matrix A and show that $|A| \neq 0$ implies $A=I$.
(ii) Show that all eigenvalues of a square matrix A are non-zero if and only if A is non-singular.

