Gurudas College

Internal Assessment Examination, 2021

Subject-CEMA, SEM-IV

Paper- CC-4-10

Full Marks-10

Time-30 mins

Answer <u>any five</u> questions $5 \times 2 = 10$

- 1. Calculate the CFSE (crystal field stabilization energy) for a high-spin d⁶ octahedral complex.
- Show the relationship between (a) pairing energy (P) and Δ₀ for weak field and strong field ligand (b) Δ₀ and Δ_t.
- 3. Calculate the OSSE (octahedral site stabilization energy) for high spin d^2 configuration.
- Explain the order of MLCT transition energy among the following: [V(CO)₆]⁻, [Cr(CO)₆], [Mn(CO)₆]⁺.
- 5. For d⁸ transition metal ions the observed magnetic moment is in the order: $\mu_{oct} < \mu_{td} justify$.
- 6. Define labile and inert complexes and explain the lability sequence $AlF_6{}^{3-}>SiF_6{}^{2-}>PF_6{}^->SF_6.$
- 7. MnSO₄ is pale pink but MnO_4^- is intense violet justify the origin of their colour and the colour intensity with respect to selection rules of the electronic transition.
- 8. Give a brief note on oxidation states of d-block elements.