2021

PHYSICS - GENERAL

Paper : GE/CC-1

(Mechanics)

Full Marks : 50
Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাগুলি পূর্ণমান নির্দেশক।
১নং প্রশ্ন এবং অন্য যে-কোনো চারটি প্রশ্নের উত্তর দাও।
১। যে-কোনো পাঁচটি প্রশ্নের উত্তর দাও :
২×৫
(ক) যদি ভেক্টর $\vec{A}=(2 \hat{i}+a \hat{j}+\hat{k})$ এবং $\vec{B}=(4 \hat{i}-2 \hat{j}-2 \hat{k})$ পরস্পরের সঙ্গে উল্লম্ব হয় তাহলেে ' a '-এর মান নির্ণয় করো।
(খ) স্থির মানের একটি ভেক্টর রাশি $\vec{A}(t)-এ র ~ জ ন ্ য ~(|\vec{A}(t)|=$ ঞ্রুবক $)$, দেখাও যে $\vec{A} \cdot \frac{d \vec{A}}{d t}=0$ ।
(গ) দেখাও যে $\vec{F}=a(\vec{v} \times \hat{k})$ একটি কার্যহীন বল। এখানে a একটি ধ্রুবক এবং \vec{v} বেগ নির্দেশ করছে।
(ঘ) জড়তা ভ্রামক কাকে বলে ?
(ঙ) নিউটনের মহাকর্য সূত্রটি লেখো।
(চ) একটি কণার গতিপথ $x=A \exp (i \omega t)+B \exp (-i \omega t)$ সমীকরণ দ্বারা নির্দেশিত যেখানে A এবং B ঞ্রুবক। দেখাও যে কণাটি সরল দোলগতি সম্পন্ন করে।
(ছ) 5 mm ব্যাসার্ধ্ধের একটি সাবান বুদবুদের ভিতরে অতিরিক্ত চাপ নির্ণয় করেরা। প্রদত্ত, সাবান দ্রবণের পৃষ্ঠটান $0.03 \mathrm{~N} / \mathrm{m}$ ।
२। (ক) $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$ হলে $(1,2,-1)$ বিन्দুতে $\vec{\nabla} \phi$ निর্ণয় করো।
(খ) a ধ্রুবকটির কোন্ মানের জন্য $\vec{A}=(2 x+y) \hat{i}+(z-a y) \hat{j}+\left(x^{2} y+z\right) \hat{k}$ ভেক্টরক্ষেত্রটি সলিনয়ডাল হবে ?
(গ) প্রমাণ করো $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B}) ।$
৩। (ক) সংরক্ষী বল বলতে কী বোঝো? দেখাও যে $\vec{F}(\vec{r})=\frac{k}{r^{2}} \hat{r}(k=$ ঞ्रুবক) একটি সংরক্ষী বল। সংশ্লিষ্ট স্থিতিশক্তিটি নির্ণয় করো।
(খ) কোনো কণাসমষ্টির ভরকেন্দ্রের সংজ্ঞা দাও। R ব্যাসার্ধ্রে একটি সুষম অর্ধবৃত্তাকার চাকতির ভরকেন্দ্রের অবস্থান নির্ণয় করো।

8। (ক) আবর্তনের কার্যকর ব্য|সার্ধ বলতে কী বোঝো ?
(খ) জাড্য ভ্রামক সংক্রান্ত ‘লম্ব অক্ষসমূহের উপপাদ্য’ বিবৃত ও ব্যাখ্যা করো।
(গ) ' m ' ভর এবং ‘ L ' দৈর্ঘ্য বিশিষ্ট একটি সরু ও সুষম দত্ডের দৈর্ঘ্যের মধ্যবিন্দু দিয়ে এবং দৈর্ঘ্যের অভিলম্বভাবে গমনকারী অক্ষের সাপেক্ষে ওই দত্ডের জাড্য ভ্রামক নির্ণয় করো।
২+(২+৩)+৩

৫। (ক) কেন্দ্রীয় বলক্ষেত্র বলতে কী বোঝো? দুটি উদাহরণ দাও। দেখাও যে কেন্দ্রীয় বলের অধীনে কণার গতি সমতলীয় হয়।
(খ) গ্রহের গতি সম্পর্কিত কেপলারের সূত্রগুলি বিবৃত করো।
(২+২+৩)+৩
৬। (ক) পৃষ্ঠটান ও পৃষ্ঠের স্থিতিশক্তি বলতে কী বোঝো ?
(খ) $Y=3 K(1-2 \sigma)$ সম্পর্কটি প্রতিষ্ঠা করো, যেখানে চিহ্গুলি প্রচলিত অর্থে ব্যবহৃত হয়েছে।
(গ) একটি তারের মোচড়ে়ে জন্য প্রতি একক আয়তন্ন কৃতকার্যের মান দেখাও যে, $\frac{1}{2} \times$ কৃন্তন পীড়ন \times কৃন্তন বিকৃতির সমান।
৩+8+৩

१। (ক) অবমन्দিত কন্পন বলতে কী বোঝো?
(খ) m ভরের একটি কণার উপর একটি প্রত্যানায়ক বল $s x$, একটি মন্দনবল $k v$ ক্রিয়াশীল, যেখানে x এবং v যথাক্রুমে তাৎক্ষণিক সরণ ও বেগ নির্দেশ করছে। s এবং k ঞ্রুবক। কণাটির গতির অবকল সমীকরণটি লেখো এবং সমাধান করো।
(গ) ক্রিটিকাল অবমন্দনের শর্ত লেখো এবং x vs. t লেখচিত্র आঁকো।
২+(২+৩)+(১+২)

[English Version]

The figures in the margin indicate full marks.
Answer question no. 1 and any four questions from the rest.

1. Answer any five questions:
(a) Determine the value of ' a ' so that $\vec{A}=(2 \hat{i}+a \hat{j}+\hat{k})$ and $\vec{B}=(4 \hat{i}-2 \hat{j}-2 \hat{k})$ are perpendicular to each other.
(b) For a vector $\vec{A}(t)$ of constant magnitude $(|\vec{A}(t)|=$ constant $)$, show that $\vec{A} \cdot \frac{d \vec{A}}{d t}=0$.
(c) Show that $\vec{F}=a(\vec{v} \times \hat{k})$ is a no-work force. Here a is a constant and \vec{v} is the velocity.
(d) Define moment of inertia.
(e) State Newton's Law of gravitation.
(f) The trajectory of a particle is given by $x=A \exp (i \omega t)+B \exp (-i \omega t)$, where A and B are constants. Show that the particle executes simple harmonic motion.
(g) Find the excess pressure inside a soap bubble of radius 5 mm . Given, the surface tension of soap solution is $0.03 \mathrm{~N} / \mathrm{m}$.
2. (a) If $\phi(x, y, z)=3 x^{2} y-y^{3} z^{2}$, find $\vec{\nabla} \phi$ at point $(1,2,-1)$.
(b) Find the constant a such that the vector field $\vec{A}=(2 x+y) \hat{i}+(z-a y) \hat{j}+\left(x^{2} y+z\right) \hat{k}$ becomes solenoidal.
(c) Prove that $\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})$.
3. (a) What do you mean by conservative force? Show that $\vec{F}(\vec{r})=\frac{k}{r^{2}} \hat{r}(k=$ constant $)$ is a conservative force. Find the corresponding potential energy.
(b) Define the centre of mass of a system of particles. Find out the position of the centre of mass of a uniform semicircular disc of radius R.
$(1+3+2)+(1+3)$
4. (a) What do you mean by radius of gyration?
(b) State and prove perpendicular axes theorem.
(c) Calculate the moment of inertia of a thin uniform rod of mass ' m ' and length ' L ' about an axis passing through its centre and perpendicular to its length.
5. (a) What do you mean by central force field? Give two examples. Show that motion under central force occurs in a plane.
(b) State Kepler's laws of planetary motion.
6. (a) Define surface tension and surface energy.
(b) Establish the relation $Y=3 K(1-2 \sigma)$, where the symbols have their usual meanings.
(c) Show that the work done per unit volume in twisting a wire is equal to

$$
\frac{1}{2} \times \text { shearing stress } \times \text { shearing strain. }
$$

7. (a) What do you mean by damped vibration?
(b) A particle of mass ' m ' is acted upon by a restoring force $s x$ and a damping force $k v$, where x is displacement, v is instantaneous velocity and s and k are constants. Write down the differential equation of motion of that particle and solve it.
(c) Write the condition of critical damping and plot x vs. t for critically damped case.

$$
2+(2+3)+(1+2)
$$

