Gurudas College

Internal Assessment Examination, 2020

Subject-CEMA, SEM-I

Paper- CC-1-1

Full Marks-10

Time-30 mins

Answer <u>any 10</u> questions (questions are of 1 mark each)

- 1. What are the values of the n, l, m_l quantum numbers that describe the 5f orbitals?
- 2. Calculate the number of nodes in the radial distribution function curve of 3s and 6d orbitals.
- 3. Calculate the ground state term symbol for V^{2+} .
- 4. Justify which one is stronger acid---H₃PO₄ or H₃PO₃.
- 5. Predict the direction of the following equilibrium: $HgF_2 + BeI_2 < ==> HgI_2 + BeF_2$
- 6. Which will be most basic towards BMe₃: Me₃N or Et₃N?
- 7. From the following Latimer diagram:

2.2 0.77 -0.47 $\text{FeO}_4^{2^-}$ -----> Fe^{3^+} -----> Fe^{2^+} ----> Fe^{3^+}

Calculate E^0 of FeO_4^2 -/Fe system.

- 8. Define Formal Potential.
- 9. Write Nernst Equation at 25°C for the half cell $MnO_4^- + 8 H^+ + 5e ----> Mn^{2+} + 4H_2O$
- 10. Write one purpose of adding H_3PO_4 in the titration of Fe²⁺ by $K_2Cr_2O_7$ using BDS as indicator.
- 11. Give the formal charge on 'N' in the following structure: $-C \equiv N-H$
- 12. Compare the dipole moment of CH₃F and CH₃Cl.
- 13. Calculate ΔH° for the following reaction.

$$CH_3CH_2Br + H_2O \longrightarrow CH_3CH_2OH + HBr$$

Bond dissociation energy for CH_3CH_2 -Br = 285 KJ/mol, H-OH = 498 KJ/mol, CH_3CH_2 -OH = 393 KJ/mol and H-Br = 368 KJ/mol.

14. Which one is more stable and why?

15. Give one example of steric inhibition of resonance.