2021

COMPUTER SCIENCE - HONOURS

Paper : CC-1

(Digital Logic)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Answer question no. 1 and any four questions from the rest.

1. Answer any five questions of the following:
(a) State De Morgan's theorems.
(b) Convert (3EA.1D) ${ }_{16}=(?)_{2}=(?)_{8}$.
(c) $\operatorname{Add}(11101.101)_{2}+(1001.11)_{2}$ and $(6 \mathrm{D} . \mathrm{C})_{16}+(3 \mathrm{~B} .2)_{16}$.
(d) Design EX-OR gate by NAND gates only.
(e) Subtract $(1011)_{2}-(1101)_{2}$ using 2 's complement.
(f) Which type of topology has been adopted to overcome race around condition? Explain.
(g) What are the differences between multiplexer and demultiplexer?
(h) How many flip-flops and other logic gates are required to design an UP decade counter?
2. (a) Simplify the logic expression $\mathrm{F}=\sum m(0,2,5,7,8,10,13,15)$ by K-map method. Design the circuit following simplified expression. Draw the truth table.
(b) Identify the maxterms from the above mentioned logic expression. Simplify it by K-map method.
3. (a) Implement $Y_{\text {difference }}$ output of a 3-bit full subtractor by the logic gates. Draw the truth table.
(b) Implement $Y_{\text {carry }}$ output of a 3-bit full adder by NAND gates only. $\quad 6+4$
4. (a) Implement $\mathrm{Y}=\sum m(0,4,5,6,9,10,13,14)$ by $8: 1$ multiplexer. Draw the truth table.
(b) Implement $\mathrm{Y}_{\text {sum }}$ output of a half adder by demultiplexer.
5. (a) Design a 2 -bit multiplier by multiplying (10) $)_{2}$ and (11) $)_{2}$.
(b) Draw the necessary truth table.
6. (a) What is Set-Reset flip-flop? Design it by NAND gates only and explain. Draw the truth table.
(b) What is race around condition?
(c) How can the Set-Reset flip-flop be converted into D-flip-flop? Draw the truth table of D-flip-flop.
7. (a) Design an asynchronous UP decade counter. Explain its function.
(b) Design a MOD-5 counter showing all the count sequence.
