GURUDAS COLLEGE B.SC. PART I (HONOURS) EXAM - 2020 FIRST PAPER **SUBJECT - MATHEMATICS**

Time Allotted : 2 Hours

Full Marks : 50

Instruction: The scanned copy of the answer script should be submitted through the email - gcmath.online.exam@gmail.com with in 30 minutes after the end of Examination to the Mathematics Department.

GROUP - A (Module - I) Marks - 25

Answer any **five** questions :

- 1. Reduce the equation $x^3 3x^2 + 12x + 16 = 0$ to its standard form and then solve the equation by Cardan's method. 5
- 2. If a, b, c are positive real numbers prove that $\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} > \frac{3}{2}, \text{ unless } a = b = c.$
- 3. Prove that the equation $(x+1)^4 = a(x^4+1)$ is a reciprocal equation if $a \neq 1$ and solve it when a = -2. 5
- 4. If $x = \cos \alpha + i \sin \alpha$, $y = \cos \beta + i \sin \beta$, $z = \cos \gamma + i \sin \gamma$ and x + y + z = xyz, prove that $\cos(\beta - \gamma) + \cos(\gamma - \alpha) + \cos(\alpha - \beta) = -1.$ 5
- 5. How many integers are exist in the interval (1, 1500) which satisfy $x \equiv 2 \pmod{5}$, $x \equiv 2$ $3 \pmod{7}, x \equiv 4 \pmod{11}$? 5
- 6. (a) Find all elements of order 8 in the group $(\mathbb{Z}_{24}, +)$, where $(\mathbb{Z}_{24}, +)$ represents the additive group of residue classes of integers modulo 24. $\mathbf{2}$
 - (b) Let (G, *) be a group and $a \in G$. Let $H = \{x \in G : x * a = a * x\}$. Prove that (H, *)is a subgroup of (G, *). 3

GROUP - B (Module - II) Marks - 25

Answer any **five** questions :

- 7. Show that the quantity $ab h^2$ of the quadratic expression $ax^2 + 2hxy + by^2 + 2gx + 2fy + c$ remains invariant upon rotation of coordinate axes through an angle θ . 5
- 8. Show that the acute angle between the pair of straight lines $ax^2 + 2hxy + by^2 = 0$, $h^2 ab > 0$ is $tan^{-1} \frac{2\sqrt{(h^2 - ab)}}{(a+b)}$. 5

5

- 9. Show that the general equation of second degree $x^2 5xy + 6y^2 + 11x 17y + 13 = 0$ represents an ellipse and find its canonical form. 5
- 10. Find the polar equation of a straight line at a distance p from the pole and perpendicular to the initial line. 5
- 11. Find the necessary and sufficient condition that two non-parallel straight lines $(x x_i)/l_i = (y y_i)/m_i = (z z_i)/n_i$, i = 1, 2 to be coplanar. 5
- 12. Find the radius of the circle $x^2 + y^2 + z^2 2y 4z 11 = 0$, x + 2y + 2z = 15. 5