GURUDAS COLLEGE
 B.SC. PART I (HONOURS) EXAM - 2020
 FIRST PAPER
 SUBJECT - MATHEMATICS

Time Allotted : 2 Hours
Full Marks : 50

Instruction: The scanned copy of the answer script should be submitted through the email - gcmath.online.exam@gmail.com with in 30 minutes after the end of Examination to the Mathematics Department.

GROUP - A (Module - I)
 Marks - 25

Answer any five questions :

1. Reduce the equation $x^{3}-3 x^{2}+12 x+16=0$ to its standard form and then solve the equation by Cardan's method.
2. If a, b, c are positive real numbers prove that $\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}>\frac{3}{2}$, unless $a=b=c$.
3. Prove that the equation $(x+1)^{4}=a\left(x^{4}+1\right)$ is a reciprocal equation if $a \neq 1$ and solve it when $a=-2$.
4. If $x=\cos \alpha+i \sin \alpha, y=\cos \beta+i \sin \beta, z=\cos \gamma+i \sin \gamma$ and $x+y+z=x y z$, prove that $\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)=-1$.
5. How many integers are exist in the interval $(1,1500)$ which satisfy $x \equiv 2(\bmod 5), x \equiv$ $3(\bmod 7), x \equiv 4(\bmod 11) ?$
6. (a) Find all elements of order 8 in the group $\left(\mathbb{Z}_{24},+\right)$, where $\left(\mathbb{Z}_{24},+\right)$ represents the additive group of residue classes of integers modulo 24.
(b) Let $(G, *)$ be a group and $a \in G$. Let $H=\{x \in G: x * a=a * x\}$. Prove that $(H, *)$ is a subgroup of $(G, *)$.

GROUP - B (Module - II)

Marks - 25

Answer any five questions :

7. Show that the quantity $a b-h^{2}$ of the quadratic expression $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c$ remains invariant upon rotation of coordinate axes through an angle θ.
8. Show that the acute angle between the pair of straight lines $a x^{2}+2 h x y+b y^{2}=0, h^{2}-a b>0$ is $\tan ^{-1} \frac{2 \sqrt{\left(h^{2}-a b\right)}}{(a+b)}$.
9. Show that the general equation of second degree $x^{2}-5 x y+6 y^{2}+11 x-17 y+13=0$ represents an ellipse and find its canonical form.
10. Find the polar equation of a straight line at a distance p from the pole and perpendicular to the initial line.
11. Find the necessary and sufficient condition that two non-parallel straight lines $\left(x-x_{i}\right) / l_{i}=$ $\left(y-y_{i}\right) / m_{i}=\left(z-z_{i}\right) / n_{i}, i=1,2$ to be coplanar.
12. Find the radius of the circle $x^{2}+y^{2}+z^{2}-2 y-4 z-11=0, x+2 y+2 z=15$. 5
