2022

PHYSICS

Paper : PHY 523

(Nonlinear Dynamics)

Full Marks : 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

1. (a) Make a schematic plot of the potential $V(x)$ for the one-dimensional system $\dot{x}=x-x^{3}$. Identify all the equilibrium point(s). Plot the phase trajectories close to the equilibrium point(s).
(b) Show that the initial value problem $\dot{x}=x^{1 / 3}$ with $x(0)=0$ does not have a unique solution. What happens if the initial value is $x(0)=x_{0} \neq 0$?
$(2+2+2)+(3+1)$
2. (a) Consider the system given by $\dot{x}=r+x^{2}$. Show that the system undergoes a bifurcation as the parameter r is varied from $r>0, r=0$ and $r<0$. Classify the nature of the fixed points for $r<0$ and discuss what happens when $r \rightarrow 0$. Draw the bifurcation diagram.
(b) Consider the system $\dot{x}=r x+x^{3}-x^{5}$.
(i) Obtain algebraic expressions for all the fixed points as the prarameter r takes different values from negative to positive, through zero.
(ii) For different r values, sketch the vector fields. Clearly indicate all the fixed points and their
stability stability.
$(1+1+1)+(4+3)$
3. (a) Enumerate the important features of a limit cycle. Discuss how it differs from the regular closed orbits which may occur in a linear system.
(b) Consider the system $\dot{r}=r\left(1-r^{2}\right)+\mu r \cos \theta, \dot{\theta}=1$. Identify a trapping region and hence, using Poincare- Bendixon theorem, show that a limit cycle exists for positive but sufficiently small μ. $(3+2)+5$
4. (a) Consider the dynamics of a point (x, y) described by the equations

$$
\frac{d x}{d t}=-y \quad \frac{d y}{d t}=x+a y,
$$

where a is a real parameter. Find the stability of the fixed point for $0<a<2$.
(b) The equation of motion of a pendulum, in the absence of damping and external driving, in dimensionless units is given by,

$$
\ddot{\theta}+\sin (\theta)=0 .
$$

Linearize the system and find the J at the origin is a nonlinear centre.
5. (a) Consider the map $x_{n+1}=r x_{n}-x_{n}^{3}$ for real values of x. Locate the fixed points and find the range of values of r for which the map has one or more stable fixed point(s). Find the values of r for which the fixed points are (i) superstable (ii) marginally stable (iii) unstable.
(b) For the map $f(x, a)=-(1+a) x+x^{2}$, define the universal constants δ. Given that the renormalisation equation for the bifurcation point a_{k} is $a_{k}=a_{k+1}^{2}+4 a_{k+1}-2$, find the vlaue of δ. $5+5$
6. (a) Define the similarity dimension of a self-similar fractal set and find the dimension of Koch curve. What is the length of Koch curve?
(b) Consider the Henon map,

$$
\begin{aligned}
& x_{n+1}=2 x_{n}^{2}+2 C x_{n}-y_{n} \\
& y_{n+1}=x_{n}
\end{aligned}
$$

where C is a parameter. (i) Show that this map is area-preserving. (ii) Find the (1-cycle) fixed points. (iii) Find the regions of values of C for which the fixed points are stable. $4+(1+1+4)$
7. (a) Consider the Lorenz equations

$$
\begin{aligned}
& \dot{X}=-\sigma X+\sigma Y \\
& \dot{Y}=-X Z+r X-Y \\
& \dot{Z}=X Y-b Z .
\end{aligned}
$$

in usual notation. Show that the origin is a fixed point and locate the other fixed points. Show that the origin is stable for $r<1$ and unstable for $r>1$.
(b) For the map $x_{n+1}=\sqrt{x_{n}}$ with positive values of x, find the fixed point(s) and analyse their stabilin. Will there be any two-cycle fixed point?
(c) What are the basic characteristics of a strange attractor?

