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Answer any five questions.
1

. (a) Make a schematic plot of the potential ¥(x) for the one-dimensional system x= x—x°. Identify all
the equilibrium point(s). Plot the phase trajectories close to the equilibrium point(s).

(b) Show that the initial value problem i =x'"? with x(0)=0 does not have a unique solution. What
happens if the initial value is x(0) = x,# 0? (2+2+2)+(3+1)

1. (a) Consider the system given by X=r+x>. Show that the system undergoes a bifurcation as the
parameter r is varied from »>0, » =0 and » < 0. Classify the nature of the fixed points for < 0
and discuss what happens when » — 0. Draw the bifurcation diagram.

(b) Consider the system ¥ =y + x> - " .
(1) Obtain algebraic expressions for all the fixed points as the prarameter r takes different values
from negative to positive, through zero.
(1) For different » values, sketch the vector fields. Clearly indicate all the fixed points and their
. stability. (1+1+1)+(4+3)

3. (a) Enumerate the important features of a limit cycle. Discuss how it differs from the regular closed
ko orbits which may occur in a linear system.

(b) Consider the system rF=r(1-r°)+urcosf, 0=1. Identify a trapping region and hence, using
Poincare- Bendixon theorem, show that a limit cycle exists for positive but sufficiently small p.

ne Tk
1 (3+2)+5
4. (a) Consider the dynamics of a point (x, v) described by the equations
dx dy
—=-y =x+ay,
d ~ d

where @ is a real parameter. Find the stability of the fixed point for 0 < ¢ < 2.
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6. (a) Define the similarity dimension of a self-similar fractal set and find the dimension of Koch cury 1. (a)
£, . _

What is the length of Koch curve?

(b) Consider the Henon map,

Xpal = 2.\73 + zcxn — Y
Yn+l = Xn
h =t 1 3 3
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7. (a) Consider the Lorenz equations
(b) I

X =-cX +oY
Y=-XZ+rX-Y
Z=XY-b2Z.
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