(T(I)-Chemistry – H-2A)

2021

CHEMISTRY — HONOURS

Second Paper

(Group - A)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

CHT-11a

Unit - I

Answer any three questions.

1.	(a)	Calculate the decay constant, mean lifetime and half-life of a radio nuclide whose activity diminish by 10% during 100 days.	ies
	(b)	What is meant by K-electron capture? Give example.3-	+2
2.		What is artificial radioactivity? Cite one application of artificial radioactivity.	
	(b)	How many α -particles and β -particles are emitted in the transformation from ${}_{92}U^{238}$ to ${}_{82}Pb^{20}_{3}$	⁾⁶ ? +2
3.	(a)	Differentiate between nuclear fission and spallation.	
	(b)	State and explain Pauli's exclusion principle. 3	+2
4.	(a)	Sketch the radial distribution function for the $2s$ orbital and show how many nodal planes are the in $2s$ orbital.	ere
	(b)	Calculate the radius of the Li^{2+} ion in the first excited state. 3	+2
5.	(a)	Discuss briefly the limitations of Aufbau principle.	
	(b)	Determine the ground state term symbol for V^{3+} ion. 3	+2
Unit - II			
Answer any two questions.			

- 6. (a) Using Slater's rules calculate the effective nuclear charge for a 3d-electron of an element having atomic number 26.
 - (b) The atomic radii of Zr and Hf are almost identical. Explain why. 3+2

Please Turn Over

T(I)-Chemistry – H-2A

- 7. (a) What is electron affinity of an element? Why is the electron affinity of chlorine greater than that of fluorine?
 - (b) Justify: $r_{K^+} < r_{Ar} < r_{Cl^-}$ 3+2
- 8. (a) Using Pauling scale calculate the electronegativity values of As in AsF₃ and AsF₅. Given : $E_{As-As} = 146 \text{ kJmol}^{-1}$, $E_{F-F} = 155 \text{ kJmol}^{-1}$, $E_{As-F}(AsF_5) = 484 \text{ kJmol}^{-1}$, $E_{As-F}(AsF_3) = 406 \text{ kJmol}^{-1}$, $\chi_F = 4.0$.
 - (b) The first ionization energies (kJmol⁻¹) of Ca(590), Sr(550) and Ba(503). Justify. 3+2

CHT-11b

Unit - I

Answer any three questions.

- **9.** (a) State Bent's rule. With the help of this rule explain the structure of PCl_3F_2 .
 - (b) Explain the solubility trends in water : $MgSO_4 > CaSO_4 > BaSO_4$. 3+2
- 10. (a) Apply VSEPR theory to predict the shape of the following species :
 (i) XeOF₄ (ii) ClO₂F₃ (iii) H₃O⁺
 - (b) Why is the melting point of CuCl (422°C) much lower than that of KCl (776°C)? 3+2

3+2

- (a) What are the differences between Schottky and Frenkel defects in ionic solids?
 (b) Explain : He₂ is not formed but He₂⁺ is. 3+2
- **12.** (a) Calculate the limiting radius ratio for NaCl structure.
 - (b) BrF_5 is square pyramidal. Justify.
- 13. (a) Calculate the heat of formation of KF crystal using Born-Haber cycle from the given data : Heat of sublimation of K(s) = 21 kcal/mol, Dissociation energy of F₂(g) = 38 kcal/mol, Ionization energy of K(g) = 99 kcal/mol, Electron affinity of F(g) = -80 kcal/mol, Lattice energy of KF(s) = -193 kcal/mol.
 - (b) Discuss the relative bond lengths in N_2 and N_2^+ species. 3+2

Unit - II

Answer any two questions.

- (a) HCl, H₂SO₄ and HNO₃ all are strong acids in H₂O but they differ in strength in acetic acid medium. Explain.
 - (b) Calculate approximate pK_a values of H_2SO_3 and H_2SO_4 using Pauling's rules. 3+2

- (T(I)-Chemistry H-2A)
- 15. (a) What are superacids? Give an example. What parameter is used to express their acidity?
 (b) Write the conjugate acids and bases for the following ions or molecules. HS⁻, H₂PO₄⁻, CH₃COOH, HF 3+2
- **16.** (a) Discuss the trend in acidity of the oxyacids of chlorine.
 - (b) Calculate the pH of a mixture containing 100 ml 0.1(M) CH₃COOH and 200 ml 0.01(M) CH₃COONa. [Given : $pK_a = 4.74$] 3+2