V(3rd Sm.)-Mathematics-H/CC-6/CBCS

2021

MATHEMATICS — HONOURS

Paper : CC-6

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- Choose the correct alternative with proper justification (1 mark for correct answer and 1 mark for justification):
 (1+1)×10
 - (a) The integral domain of matrices $\left\{ \begin{pmatrix} a & b \\ 3b & a \end{pmatrix} : a, b \in \mathbb{Q} \right\}$, where \mathbb{Q} is the set of all rationals, under

matrix addition and multiplication is

- (i) not a field (ii) a field
- (iii) a skew field but not a field (iv) none of the above.
- (b) Let A and B be ideals of a ring R. Choose from the following properties which holds for R
 - (i) A + A = A (ii) $AB = A \cap B$, always for all ring R
 - (iii) $A + B = A \cup B$, always \forall ring R (iv) none of the above.
- (c) Which of the following statement is true?
 - (i) $(z, +, \cdot)$ has no unit element
 - (ii) In the ring $(z_6, +, \cdot)$, every non-zero element is unit
 - (iii) The set of all unit in a ring R with unity does not form a group w.r.t. multiplication
 - (iv) If a be a unit in a ring R with unity, then a is not a divisor of zero.
- (d) The ideal $(2z, +, \cdot)$ in the ring $(z, +, \cdot)$, with z denoting set of all integers, is
 - (i) a prime ideal (ii) not a prime ideal
 - (iii) a maximal ideal but not a prime ideal (iv) none of the above.

(e) In a field of characteristic three, $(a + b)^6$ equals to

- (i) $(a^3 + b^3)(a^2 + 2ab + b^2)$ (ii) $a^6 + b^6$
- (iii) $(a^3 + b^3)(a^2 + b^2)$ (iv) none of these.

(f) The number of independent elements in Z_{mn} where m > 1, n > 1 are relatively prime is

- (i) at least 2 (ii) at least 4
- (iii) 0 (iv) none of the above.

Please Turn Over

V(3rd Sm.)-Mathematics-H/CC-6/CBCS			(2)		
(g)	For	the subspaces $U = \begin{cases} 0 \\ c \end{cases}$	$ \begin{pmatrix} 0 \\ d \end{pmatrix} $ and $V = \left\{ \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) \right\} $	а і с –	$\left. \begin{array}{c} b \\ c \end{array} \right\}$ the dim U and dim V are
	(i)	(2, 1)		(ii)	(2,3)
	(iii)	(2, 2)		(iv)	(1, 3)
(h)	Wh	ich one is not a vector	space?		
	(i)	C over C		(ii)	€ over ℝ
	(iii)	R over C		(iv)	ℝ over Q
(i)	Wh	ich of the following is a	subspace of \mathbb{R}^3 ?		
	(i)	2a+3b+5c=0		(ii)	2a + 3b + 5c = 1
	(iii)	2a+3b+5c=-1		(iv)	None of the above; where $(a, b, c) \in \mathbb{R}^3$
(j)	For	a real symmetric matrix	x, eigenvalues are		
	(i)	all real		(ii)	all complex
	(iii)	cannot be ascertained		(iv)	both real and complex.

Unit - I

Answer any five questions.

2. (a) Let p be any prime integer, then show that there are only two non-isomorphic rings of p elements.

- (b) Find the maximal ideals and prime ideals of the ring Z_8 .
- (c) If *n* is a positive integer and *a* is only prime integer to *n*, then $a^{\varphi(n)} \equiv 1 \pmod{n}$, where $\varphi(n)$ is number of +ve integers less than and prime to *n*. Prove using theory of rings. 5

5 3+2

2+3

- (d) Prove that the subring $S = \{a + b\sqrt{5}; a, b \in Q\}$ is a subfield of \mathbb{R} (Set of real numbers). 3+2
- (e) If S and T are ideals of a ring R such that $S \cap T = \{0\}$, prove that $xy = 0 \forall x \in s$ and $y \in T$.
- (f) In a commutative ring R with unity, prove that an ideal V is a prime ideal iff the quotient ring R/V is an integral domain. 3+2
- (g) State fundamental theorem of ring homomorphism. Show that a ring with unity is a field, by definition.
- (h) If *I* and *J* are two ideals of a ring *R*, define $f: R/I \cap J \to R/I \times R/J$ by $f(a + I \cap J) = (a + I, a + J)$ $\forall a \in R$. Show that *f* is well-defined isomorphism. 2+3

(3)

Unit - II

Answer any four questions.

- 3. (a) Prove that any linearly independent set of n vectors of a vector space V over R is a basis of V if dim V = n. Show that R_3 can not be spanned with two vectors. 4+1
 - (b) Let V be a finite dimensional vector space over a field F and W be a subspace of V. Show that $\dim (V/W) = \dim V \dim W$.
 - (c) If $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear mapping such that (1, 2, 3), (3, 0, 1) and (0, 3, 1) goes to (-3, 0, -2), (-5, 2, -2), (4, -1, 1) respectively, then show that T is an isomorphism.
 - (d) If $T : \mathbb{R}^4 \to \mathbb{R}^3$ be defined as T(x, y, z, t) = (x y + z + t, x + 2z t, x + y + 3z 3t), then find rank and nullity of *T*.
 - (e) Prove that the sets $\{(1, 1, 0, 0), (1, 0, 1, 1)\}$ and $\{(2, -1, 3, 3), (0, 1, -1, -1)\}$ generate same vector subspaces of \mathbb{R}^4 .
 - (f) Let T be a linear map on \mathbb{R}^3 defined as T(a, b, c) = (2a, 2a 5b, 2b + c). Does T^{-1} exists? If exists, find T^{-1} .
 - (g) Prove that the linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by T(x, y, z) = (x + y, y + z, x + z) is one-one and onto.
 - (h) Show that in a vector space defined over ℝ, the vector addition is always commutative and it follows from other defined properties.