V(5th Sm.)-Mathematics-H/DSE-A-1/CBCS

2021

MATHEMATICS — HONOURS

Paper : DSE-A-1

(Advanced Algebra)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

[Notations have usual meanings]

Group – A

(Marks : 20)

- Answer all questions. In each question one mark is reserved for selecting the correct option and one mark is reserved for justification. (1+1)×10
 - (a) Let G be a group of order 22. Then which of the following statements is true?
 - (i) G is an abelian group.
 - (ii) G is a simple group.
 - (iii) G is not a simple group.
 - (iv) G is a cyclic group.
 - (b) Let G be a finite group that has only two conjugacy classes. Then which of the following is true?
 - (i) |G| = 2 (ii) |G| = 4 (iii) |G| = 6 (iv) |G| = 8
 - (c) Which of the following can be a class equation of a group?
 - (i) 10 = 1 + 1 + 1 + 2 + 5 (ii) 4 = 1 + 1 + 2
 - (iii) 8 = 1 + 1 + 3 + 3 (iv) 6 = 1 + 2 + 3
 - (d) Let p, q be prime numbers. Then which of the following is true?
 - (i) Any group of order pq is commutative. (ii) Any group of order pq is simple.
 - (iii) Any group of order p^2 is commutative. (iv) Any group of order p^2 is simple.
 - (e) The units of $\mathbb{Z}_6[x]$ are
 - (i) [1] and [4] (ii) [1] and [5]
 - (iii) [2] and [5] (iv) [3] and [5].

Please Turn Over

V(5th Sm.)-Mathematics-H/DSE-A-1/CBCS

(f) g.c.d. of 3 + i and -5 + 10i in $\mathbb{Z}[i]$ is (i) 2 + i (ii) -2 + i

(ii) -2+i (iii) 2-i (iv) -2-i.

- (g) Identify the regular ring.
 - (i) $\mathbb{Z} \times \mathbb{Z}$ (ii) $\mathbb{Z} \times \mathbb{Q}$ (iii) \mathbb{Z}_4 (iv) \mathbb{Z}_{11}

(2)

- (h) Which of the following statements is true for the field \mathbb{Q} of all rational numbers?
 - (i) \mathbb{Q} has both irreducible element and prime element.
 - (ii) \mathbb{Q} has irreducible element but does not have prime element.
 - (iii) \mathbb{Q} has prime element but does not have irreducible element.
 - (iv) \mathbf{Q} has neither any irreducible element nor any prime element.
- (i) Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree ≥ 2 . Which of the following statements is true?
 - (i) If f(x) is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{Q}[x]$.
 - (ii) If f(x) is irreducible in $\mathbb{Q}[x]$, then it is irreducible in $\mathbb{Z}[x]$.
 - (iii) If f(x) is irreducible in $\mathbb{Z}[x]$, then for all primes p, the reduction $\overline{f(x)}$ of f(x) modulo p is irreducible in $\mathbb{Z}_p[x]$.
 - (iv) If f(x) is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{R}[x]$.
- (j) Which one of the following is not a principal ideal domain?
 - (i) $\mathbb{Q}[x]$ (ii) $\mathbb{Z}[x]$ (iii) $\mathbb{Z}_5[x]$ (iv) $\mathbb{Z}_{11}[x]$

Group – B

(Marks : 15)

- 2. Answer any three questions :
 - (a) (i) Let K be a Sylow p-subgroup of a finite group G and N be a normal subgroup of G containing K. If K is normal in N, prove that K is normal in G(p) is a prime number.
 - (ii) Let G be a group and S be a G-set. For any $x \in S$, let G_x denote the stabilizer of x. Prove that $G_{bx} = bG_x b^{-1}$ for all $b \in G$ and $x \in S$. 3+2
 - (b) (i) Prove that no group of order p^2q is simple, where p and q are two distinct prime numbers.
 - (ii) Show that every group of order 99 has a normal subgroup of order 9. 3+2
 - (c) (i) Prove that any two Sylow *p*-subgroups of a finite group are conjugate (where *p* is a prime number).
 - (ii) Let G be a finite group and H be a Sylow p-subgroup of G. Prove that H is a unique Sylow p-subgroup of G if and only if H is a normal subgroup of G. 3+2

5

- (d) Prove that a commutative group G is a simple group if and only if G is isomorphic to \mathbb{Z}_p for some prime number p. 5
- (e) Let *n* be a positive integer and *H* be a subgroup of S_n of index 2. Prove that $H = A_n$.

V(5th Sm.)-Mathematics-H/DSE-A-1/CBCS

Group – C (Marks : 30)

- 3. Answer any six questions :
 - (a) (i) Let R be a Euclidean domain with Euclidean valuation δ and a, $b \in R$. If a and b are associates in *R*, then prove that $\delta(a) = \delta(b)$.
 - (ii) Let R be a Euclidean domain with Euclidean valuation δ and $a, b \in R$. If a|b and $\delta(a) = \delta(b)$, then show that a and b are associates in R. 3+2
 - (i) Show that $1 + \sqrt{-5}$ is irreducible in the ring $\mathbb{Z}\left[\sqrt{-5}\right]$. (b)
 - (ii) Show that 2 is not prime in the ring $\mathbb{Z}\left[\sqrt{5}\right]$. 3+2
 - (c) (i) Prove that the polynomial $x^6 + x^3 + 1$ is irreducible over **Q**.
 - (ii) Find the quotient field of the integral domain $\mathbb{Z}[i]$. 3+2
 - (d) Prove that every principal ideal domain is a unique factorization domain. Is the converse true? Justify your answer. 2+3
 - (e) Let $M_2(\mathbb{R})$ denote the set of all 2×2 matrices over \mathbb{R} . Show that the ring $M_2(\mathbb{R})$ with respect to usual addition and multiplication of matrices is a regular ring. 5
 - (i) Prove that the Polynomial ring $\mathbb{Z}_{8}[x]$ contains infinitely many unit elements. (f) (ii) Find a monic associate of $3x^5 - 4x^2 + 1$ in the ring $\mathbb{Z}_5[x]$. 3+2
 - (i) Find $gcd(x^4 + 3x^3 + 2x + 4, x^2 1)$ in $\mathbb{Z}_5[x]$. (g)
 - (ii) Show that $x^3 + a$ is reducible in $\mathbb{Z}_3[x]$ for each $a \in \mathbb{Z}_3$. 3+2
 - (h) Prove that in a commutative regular ring with unity, every prime ideal is maximal. 5 5
 - (i) Prove that any ring can be embedded in a ring with unity.
 - (i) (i) Prove that in a polynomial ring over a unique factorization domain, product of two primitive polynomials is again primitive.
 - (ii) In the polynomial ring $\mathbb{Z}[x]$, prove that the polynomial $3x^5 + 10x^4 25x^3 + 15x^2 + 20x + 35$ is irreducible. 3+2

(3)