2021

MATHEMATICS - HONOURS
Paper : DSE-A-1
(Advanced Algebra)
Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
[Notations have usual meanings]
Group - A
(Marks : 20)

1. Answer all questions. In each question one mark is reserved for selecting the correct option and one mark is reserved for justification.
$(1+1) \times 10$
(a) Let G be a group of order 22 . Then which of the following statements is true?
(i) G is an abelian group.
(ii) G is a simple group.
(iii) G is not a simple group.
(iv) G is a cyclic group.
(b) Let G be a finite group that has only two conjugacy classes. Then which of the following is true?
(i) $|G|=2$
(ii) $|G|=4$
(iii) $|G|=6$
(iv) $|G|=8$
(c) Which of the following can be a class equation of a group?
(i) $10=1+1+1+2+5$
(ii) $4=1+1+2$
(iii) $8=1+1+3+3$
(iv) $6=1+2+3$
(d) Let p, q be prime numbers. Then which of the following is true?
(i) Any group of order $p q$ is commutative.
(ii) Any group of order $p q$ is simple.
(iii) Any group of order p^{2} is commutative.
(iv) Any group of order p^{2} is simple.
(e) The units of $\mathbb{Z}_{6}[x]$ are
(i) [1] and [4]
(ii) [1] and [5]
(iii) [2] and [5]
(iv) [3] and [5].
(f) g.c.d. of $3+i$ and $-5+10 i$ in $\mathbb{Z}[i]$ is
(i) $2+i$
(ii) $-2+i$
(iii) $2-i$
(iv) $-2-i$.
(g) Identify the regular ring.
(i) $\mathbb{Z} \times \mathbb{Z}$
(ii) $\mathbb{Z} \times \mathbb{Q}$
(iii) \mathbb{Z}_{4}
(iv) \mathbb{Z}_{11}
(h) Which of the following statements is true for the field \mathbb{Q} of all rational numbers?
(i) \mathbb{Q} has both irreducible element and prime element.
(ii) \mathbb{Q} has irreducible element but does not have prime element.
(iii) \mathbb{Q} has prime element but does not have irreducible element.
(iv) \mathbb{Q} has neither any irreducible element nor any prime element.
(i) Let $f(x) \in \mathbb{Z}[x]$ be a polynomial of degree ≥ 2. Which of the following statements is true?
(i) If $f(x)$ is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{Q}[x]$.
(ii) If $f(x)$ is irreducible in $\mathbb{Q}[x]$, then it is irreducible in $\mathbb{Z}[x]$.
(iii) If $f(x)$ is irreducible in $\mathbb{Z}[x]$, then for all primes p, the reduction $\overline{f(x)}$ of $f(x)$ modulo p is irreducible in $\mathbb{Z}_{p}[x]$.
(iv) If $f(x)$ is irreducible in $\mathbb{Z}[x]$, then it is irreducible in $\mathbb{R}[x]$.
(j) Which one of the following is not a principal ideal domain?
(i) $\mathbb{Q}[x]$
(ii) $\mathbb{Z}[x]$
(iii) $\mathbb{Z}_{5}[x]$
(iv) $\mathbb{Z}_{11}[x]$

Group - B
 (Marks : 15)

2. Answer any three questions :
(a) (i) Let K be a Sylow p-subgroup of a finite group G and N be a normal subgroup of G containing K. If K is normal in N, prove that K is normal in $G(p$ is a prime number).
(ii) Let G be a group and S be a G-set. For any $x \in S$, let G_{x} denote the stabilizer of x. Prove that $G_{b x}=b G_{x} b^{-1}$ for all $b \in G$ and $x \in S$. 3+2
(b) (i) Prove that no group of order $p^{2} q$ is simple, where p and q are two distinct prime numbers.
(ii) Show that every group of order 99 has a normal subgroup of order 9 .
(c) (i) Prove that any two Sylow p-subgroups of a finite group are conjugate (where p is a prime number).
(ii) Let G be a finite group and H be a Sylow p-subgroup of G. Prove that H is a unique Sylow p-subgroup of G if and only if H is a normal subgroup of G.
(d) Prove that a commutative group G is a simple group if and only if G is isomorphic to \mathbb{Z}_{p} for some prime number p.

5
(e) Let n be a positive integer and H be a subgroup of S_{n} of index 2. Prove that $H=A_{n}$.

Group - C

(Marks : 30)
3. Answer any six questions :
(a) (i) Let R be a Euclidean domain with Euclidean valuation δ and $a, b \in R$. If a and b are associates in R, then prove that $\delta(a)=\delta(b)$.
(ii) Let R be a Euclidean domain with Euclidean valuation δ and $a, b \in R$. If $a \mid b$ and $\delta(a)=\delta(b)$, then show that a and b are associates in R.
(b) (i) Show that $1+\sqrt{-5}$ is irreducible in the ring $\mathbb{Z}[\sqrt{-5}]$.
(ii) Show that 2 is not prime in the ring $\mathbb{Z}[\sqrt{5}]$.
(c) (i) Prove that the polynomial $x^{6}+x^{3}+1$ is irreducible over \mathbb{Q}.
(ii) Find the quotient field of the integral domain $\mathbb{Z}[i]$.
(d) Prove that every principal ideal domain is a unique factorization domain. Is the converse true? Justify your answer.
(e) Let $M_{2}(\mathbb{R})$ denote the set of all 2×2 matrices over \mathbb{R}. Show that the ring $M_{2}(\mathbb{R})$ with respect to usual addition and multiplication of matrices is a regular ring.
(f) (i) Prove that the Polynomial ring $\mathbb{Z}_{8}[x]$ contains infinitely many unit elements.
(ii) Find a monic associate of $3 x^{5}-4 x^{2}+1$ in the ring $\mathbb{Z}_{5}[x]$.
(g) (i) Find $\operatorname{gcd}\left(x^{4}+3 x^{3}+2 x+4, x^{2}-1\right)$ in $\mathbb{Z}_{5}[x]$.
(ii) Show that $x^{3}+a$ is reducible in $\mathbb{Z}_{3}[x]$ for each $a \in \mathbb{Z}_{3}$.
(h) Prove that in a commutative regular ring with unity, every prime ideal is maximal.
(i) Prove that any ring can be embedded in a ring with unity.
(j) (i) Prove that in a polynomial ring over a unique factorization domain, product of two primitive polynomials is again primitive.
(ii) In the polynomial ring $\mathbb{Z}[x]$, prove that the polynomial $3 x^{5}+10 x^{4}-25 x^{3}+15 x^{2}+20 x+35$ is irreducible.

