2021

STATISTICS - HONOURS

Paper : DSE-B-2

(Stochastic Process and Queuing Theory)

Full Marks : 50

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Fill in the blanks (any five) [if you answer more than five, only the first five will be checked.] :
(a) If $\left(X_{n}\right)^{2} \geq 1$ are independent, $X_{n} \sim N\left(\frac{1}{2}, \frac{1}{2^{2}}\right)$ if n is odd and $X_{n} \sim \operatorname{Exp}(2)$ if n is even where $\operatorname{Exp}(\lambda)$ stands for the exponential distribution with mean $1 / \lambda$; then the sequence $\left(X_{n}\right) n \geq 1$ is \qquad stationary.
(b) A state leading to an absorbent state in a Markov chain must itself be \qquad ـ.
(c) A finite state Markov chain cannot have any \qquad state.
(d) If a, b, c and d have respective mean return times 3, 4, 5 and 6 in an irreducible Markov chain on states $\{a, b, c, d, e\}$, then the mean return time of e is \qquad
(e) A pure birth process with equal birth rates is a \qquad process.
(f) In the Kolmogorov backward equations in matrix form, $P^{\prime}(t)$ equals \qquad where $P(t)$ is the transition probability matrix at time t.
(g) A queueing discipline where customers arriving most recently are served before those waiting from earlier is called \qquad
(h) In a single-server Markovian queue with arrival rate 10 per hour and service rate 15 per hour, the limiting mean queue length is \qquad —.
2. Write short notes fully in your own words on any two of the following:
(a) Stationary distribution for the Ehrenfest chain
(b) Equality of periods of communicating states
(c) The Yule-Furry process.
3. Write essays fully in your own words on any three of the following:
(a) Number of visits to a recurrent state
(b) Roles of positive recurrence and aperiodicity in ergodicity of an irreducible Markov chain
(c) Transience of asymmetric simple random walk
(d) Conditional distribution of arrival times of a Poisson process $\left(N_{t}\right)$ up to time T given the value of N_{T} and an application
(e) Balance equations for a birth and death chain with interpretation.
