X(4th Sm.)-Statistics-H/CC-9/CBCS

2022

STATISTICS - HONOURS

Paper: CC-9
(Statistical Inference-I and Sampling Distribution)
Full Marks : 50
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
Answer any five questions from question nos. 1-8.

1. Let X_{1}, \ldots, X_{n} be a random sample from $N(\theta, 1)$ choose d so that test based on $T_{n}=\left(\#\right.$ of $\left.\left|X_{i}\right| \leq d\right) / n$ for testing $H_{0}: \theta=0$ against $\mathrm{H}_{1}: \theta=10$ has both types of errors almost zero.
2. Let X_{1}, \ldots, X_{n} be a random sample from Bernoulli (p) population, $P \in(0,1)$. Define p-value of the test based on $T_{n}=n-\left\{\#\right.$ of $\left.X_{i}=0\right\}$, for testing $H_{0}: p=P\left(X_{1}=0\right)=\frac{1}{2}$ against $H_{1}: p>\frac{1}{2}$.
3. Let $X_{1}, \ldots X_{n_{1}}, X_{n_{1+1}}, \ldots, X_{n}$ be IID $N\left(\theta, \sigma^{2}\right), \theta \in \mathbb{R}, \sigma>0$. Consider statistics
$T_{1 n}=\frac{\bar{X}_{n}-\theta}{\left[\frac{1}{n-1} \sum_{1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}\right]^{\frac{1}{2}}}$ and $T_{2 n}=\frac{\frac{1}{n-n_{1}} \sum_{n_{1}+1}^{n} X_{i}-\theta}{\left[\frac{1}{n_{1}-1} \sum_{1}^{n_{1}}\left(X_{i}-\bar{X}_{n_{1}}\right)^{2}\right]^{\frac{1}{2}}}, \bar{X}_{n_{1}}=\frac{1}{n_{1}} \sum_{1}^{n_{1}} X_{i}, \bar{X}_{n}=\frac{1}{n} \sum_{1}^{n} X_{i}$
Are sampling distribution of $T_{1 n}$ and $T_{2 n}$ same? Justify with derivations.
4. Based on a random sample $\left\{X_{1}, \ldots, X_{10}\right\}$ from $N(0,1)$ construct $T\left(X_{1}, \ldots, X_{10}\right)$ such that T follows a χ^{2} distribution with 3 d.f. Use all the observations for constructing T.
5. Let X_{1}, \ldots, X_{n} be $N(0,1)$, show that $E\left(X_{(1)}+X_{(n)}\right)=0$.
6. Let X_{1}, \ldots, X_{n} be a random sample from $N(\theta, 1), \theta \in \mathbb{R}$. Consider the confidence interval $S=\left(\bar{X}_{n}-d, \bar{X}_{n}+d\right)$ for θ where $d>\frac{Z_{\alpha / 2}}{\sqrt{n}}, Z_{\alpha / 2}$ is the upper level $\alpha / 2$ point of $N(0,1)$ distribution and $\alpha \in(0,1)$. If observed interval $\left(\bar{x}_{n}-d, \bar{x}_{n}+d\right)$ contains θ, is it possible to reject alternative at level α for testing $H_{0}: \theta=0$ against $H_{1}: \theta \neq 0$ based on critical region S ? Justify with necessary derivations.
7. Let $\left\{X_{1}, \ldots, X_{20}\right\}$ be IID $F_{2.3}$ distribution. Find the value of $E\left(\sum_{1}^{5} x_{i}^{-1} / \sum_{i}^{20} x_{i}^{-1}\right)$.
8. If $X \sim t_{n}\left(t\right.$-distribution with n.d.f.), what is the distribution of $\left(1+\frac{X^{2}}{n}\right)^{-1}$? Derive in details.
9. Let $X_{1}, \ldots, X_{n_{1}}$ and $Y_{1}, \ldots, Y_{n_{r}}$ be two independent random samples from Poisson $\left(\lambda_{1}\right)$ and Poisson $\left(\lambda_{-2}\right)$ respectively. Perform a test based on P-value for testing $H_{0}: \lambda_{1}=\lambda_{2}$ against $H_{1}: \lambda_{1}>\lambda_{2}$.
10. Let X_{1}, \ldots, X_{n} be independent and identically distributed continuous random variables with distribution function $F(x)$. Then show that
$\lim _{n \rightarrow \infty} P_{F}\left(n\left(F\left(X_{(n)}\right)-F\left(X_{(n-1)}\right)\right) \leq t\right)=e^{-1} \forall t>0$, when $X_{(i)}$ is the i-th order statistics.
11. Let X and Y be independent variables having common distribution Exponential $(\lambda), \lambda>0$. Find
(a) conditional distribution of w given u and hence
(b) marginal distribution of w, where $u=X+Y$ and $w=X-Y$.

Answer any three questions from question nos. 12-16.
12. (a) If random variables X_{1} and X_{2} are independent and each follows X^{2}-distribution with n d.f., show that $T=\frac{\sqrt{n}\left(X_{1}-X_{2}\right)}{2 \sqrt{X_{1} X_{2}}}$ follows a student's t-distribution with $n-1$ d.f. and distribution of T is independent of $X_{1}+X_{2}$.
(b) Let $X_{1}, \ldots, X_{n_{1}}$ and $Y_{1}, Y_{2}, \ldots, Y_{n_{2}}$ be independent random samples. from $N\left(\mu_{1}, \sigma_{1}{ }^{2}\right.$ and $N\left(\mu_{2}, \sigma_{2}{ }^{2}\right)$ respectively and all the parameters are unknown. Find a confidence interval of $\frac{\sigma_{1}{ }^{2}}{\sigma_{2}{ }^{2}}$ with confidence
coefficient $(1-\alpha) . \alpha \in(0,1)$. coefficient $(1-\alpha) . \alpha \in(0,1)$.
13. (a) Derive the m.g.f. of χ^{2} distribution with n d.f. Hence or otherwise show that $\mu_{r+1}=2 r\left(\mu_{r}+\mu_{r-1}\right), r \geq 1$, where $\mu_{k}=E\left(\chi_{n}^{2}\right)^{k}, k \geq 1$.
(b) Let $\left(Z_{1}, Z_{2}\right)$ have bivariate normal distribution with $E\left(Z_{1}\right)=E\left(Z_{2}\right)=0, V\left(Z_{1}\right)=V\left(Z_{2}\right)=1$ and correlation $\left(Z_{1}, Z_{2}\right)=\rho$. Suppose Z_{1} and Z_{2} are unobservable and the observable random variables are

$$
X_{i}=\left\{\begin{array}{ll}
0, & \text { if } \quad Z_{i} \leq 0 \\
1, & \text { if } \quad Z_{i}>0
\end{array} \quad i=1, Z\right.
$$

Let τ be the correlation coefficient between X_{1} and X_{2}. Prove that $\rho=\sin (\pi \tau / 2)$.
14. (a) For a bivariate sample $\left\{\left(Y_{i}, X_{i}\right) ; i=1, \ldots, n\right\}$, consider regression model $Y_{i}=\beta X_{i}+\varepsilon_{i}, i=1, \ldots, n$, where ε_{i} is independent of x_{i} and ε_{i} 's are independent and identically distributed as $N\left(0, \sigma^{2}\right)$. Derive a test for $H_{0}: \beta=0$ against $H_{1}: \beta \neq 0$.
(b) If X_{1}, \ldots, X_{n} be a random sample from $N\left(\mu, \sigma^{2}\right)$, find the sampling distribution of $\sqrt{\frac{n}{n-1}}\left(\bar{X}_{n}-X_{n}\right) / \sqrt{\left\{(n-1) S_{n}^{2}-\frac{n}{n-1}\left(X_{n}-\bar{X}_{n}\right)^{2}\right\} /(n-2)}$, where $\bar{X}_{n}=\frac{1}{n} \sum_{1}^{n} X_{i}$ and $S_{n}^{2}=\frac{1}{n-1} \sum_{1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$. $6+4$
15. (a) Let the random variables X and Y be distributed as $\chi_{n_{1}}^{2}$ and $F_{n_{1}, n_{2}}$ respectively. For any $\alpha \in(0,1)$, $\chi_{\alpha, n_{1}}^{2}$ and $F_{\alpha, n_{1}, n_{2}}$ be defined by $P\left(X \geq \chi_{\alpha, n_{1}}^{2}\right)=p\left(Y \geq F_{\alpha, n_{1}, n_{2}}\right)=\alpha$. Then show that for large n_{2}, $\chi_{\alpha, n_{1}}^{2} \approx n_{1} F_{\alpha, n_{1}, n_{2}}$.
(b) For a bivariate sample $\left\{\left(X_{1 i}, X_{2 i}\right), i=1, \ldots, n\right\}$ from bivariate normal distribution with unknown parameters $\left(\mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}, \rho\right)$, derive a test for $H_{0}: \sigma_{1}{ }^{2}=\sigma_{2}{ }^{2}$ against $H_{1}: \sigma_{1}{ }^{2} \neq \sigma_{2}{ }^{2} . \quad 5+5$
16. (a) Let X_{1}, \ldots, X_{n} be i.i.d. random variables with continuous d.f. F and let $X_{(i)}<\ldots<X_{(n)}$ be the order statistics. If M_{0} be the unique population median, then show that

$$
P_{F}\left(X_{(r)} \leq M_{0} \leq X_{(s)}\right)=\left[\sum_{k=r}^{s-1}\binom{n}{k}\right]\left(\frac{1}{2}\right)^{n}, r<s .
$$

Hence or otherwise find a confidence interval of M_{0} with coverage probability at least $1-\alpha$ for some $\alpha \in(0,1)$.
(b) Find the mean and variance of Student's t-distribution. Show that its density tends to $N(0,1)$ as degrees of freedom becomes large.

