X(4th Sm.)-Statistics-H/CC-9/CBCS

2022

STATISTICS — HONOURS

Paper : CC-9

(Statistical Inference-I and Sampling Distribution)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions from question nos. 1-8. 2×5

- 1. Let $X_1, ..., X_n$ be a random sample from $N(\theta, 1)$ choose d so that test based on $T_n = (\# \text{ of } |X_i| \le d)/n$ for testing $H_0: \theta = 0$ against $H_1: \theta = 10$ has both types of errors almost zero.
- 2. Let $X_1, ..., X_n$ be a random sample from Bernoulli (p) population, $P \in (0,1)$. Define *p*-value of the test based on $T_n = n \{\# \text{ of } X_i = 0\}$, for testing $H_0: p = P(X_1 = 0) = \frac{1}{2}$ against $H_1: p > \frac{1}{2}$.
- 3. Let $X_1, ..., X_{n_1}, X_{n_{1-1}}, ..., X_n$ be IID $N(\theta, \sigma^2), \theta \in \mathbb{R}, \sigma > 0$. Consider statistics

$$T_{1n} = \frac{\overline{X}_n - \theta}{\left[\frac{1}{n-1}\sum_{i=1}^n (X_i - \overline{X}_n)^2\right]^{\frac{1}{2}}} \text{ and } T_{2n} = \frac{\frac{1}{n-n_1}\sum_{i=1}^n X_i - \theta}{\left[\frac{1}{n_1-1}\sum_{i=1}^n (X_i - \overline{X}_{n_1})^2\right]^{\frac{1}{2}}}, \overline{X}_{n_1} = \frac{1}{n_1}\sum_{i=1}^n X_i, \overline{X}_n = \frac{1}{n_1}\sum_{i=1}^n X_i$$

Are sampling distribution of T_{1n} and T_{2n} same? Justify with derivations.

- 4. Based on a random sample $\{X_1, ..., X_{10}\}$ from N(0, 1) construct $T(X_1, ..., X_{10})$ such that T follows a χ^2 distribution with 3 d.f. Use all the observations for constructing T.
- 5. Let $X_1, ..., X_n$ be N(0, 1), show that $E(X_{(1)} + X_{(n)}) = 0$.
- 6. Let $X_1, ..., X_n$ be a random sample from $N(\theta, 1), \theta \in \mathbb{R}$. Consider the confidence interval $S = (\overline{X}_n d, \overline{X}_n + d)$ for θ where $d > \frac{Z_{\alpha/2}}{\sqrt{n}}$, $Z_{\alpha/2}$ is the upper level $\alpha/2$ point of N(0, 1) distribution

and $\alpha \in (0, 1)$. If observed interval $(\overline{x}_n - d, \overline{x}_n + d)$ contains θ , is it possible to reject alternative at level α for testing $H_0: \theta = 0$ against $H_1: \theta \neq 0$ based on critical region S? Justify with necessary derivations.

Please Turn Over

X(4th Sm.)-Statistics-H/CC-9/CBCS

- 7. Let $\{X_1, ..., X_{20}\}$ be IID $F_{2,3}$ distribution. Find the value of $E\left[\sum_{i=1}^{5} X_i^{-1} / \sum_{i=1}^{20} X_i^{-1}\right]$.
- 8. If $X \sim t_n$ (t-distribution with n.d.f.), what is the distribution of $\left(1 + \frac{X^2}{n}\right)^{-1}$? Derive in details.

Answer any two questions from question nos. 9-11.

- 9. Let $X_1, ..., X_{n_1}$ and $Y_1, ..., Y_{n_r}$ be two independent random samples from Poisson (λ_1) and Poisson (λ_2) respectively. Perform a test based on *P*-value for testing $H_0: \lambda_1 = \lambda_2$ against $H_1: \lambda_1 > \lambda_2$.
- 10. Let $X_1, ..., X_n$ be independent and identically distributed continuous random variables with distribution function F(x). Then show that

 $\lim_{n \to \infty} P_F(n(F(X_{(n)}) - F(X_{(n-1)})) \le t) = e^{-1} \forall t > 0, \text{ when } X_{(i)} \text{ is the } i\text{-th order statistics.}$

- 11. Let X and Y be independent variables having common distribution Exponential (λ), $\lambda > 0$. Find (a) conditional distribution of w given u and hence
 - (b) marginal distribution of w, where u = X + Y and w = X Y.

Answer any three questions from question nos. 12-16.

- 12. (a) If random variables X_1 and X_2 are independent and each follows X^2 -distribution with *n* d.f., show that $T = \frac{\sqrt{n}(X_1 - X_2)}{2\sqrt{X_1X_2}}$ follows a student's *t*-distribution with n - 1 d.f. and distribution of T is independent of $X_1 + X_2$.
 - (b) Let $X_1, ..., X_{n_1}$ and $Y_1, Y_2, ..., Y_{n_2}$ be independent random samples. from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ respectively and all the parameters are unknown. Find a confidence interval of $\frac{\sigma_1^2}{\sigma_2^2}$ with confidence coefficient $(1 - \alpha)$. $\alpha \in (0, 1)$. 6+4
- 13. (a) Derive the m.g.f. of χ^2 distribution with *n* d.f. Hence or otherwise show that $\mu_{r+1} = 2r(\mu_r + \mu_{r-1}), r \ge 1$, where $\mu_k = E(\chi_n^2)^k, k \ge 1$.

(2)

5×2

X(4th Sm.)-Statistics-H/CC-9/CBCS

(b) Let (Z_1, Z_2) have bivariate normal distribution with $E(Z_1) = E(Z_2) = 0$, $V(Z_1) = V(Z_2) = 1$ and correlation $(Z_1, Z_2) = \rho$. Suppose Z_1 and Z_2 are unobservable and the observable random variables are

$$X_{i} = \begin{cases} 0, & \text{if } Z_{i} \le 0\\ 1, & \text{if } Z_{i} > 0 \end{cases} \quad i = 1, Z$$

Let τ be the correlation coefficient between X_1 and X_2 . Prove that $\rho = \sin(\pi \tau/2)$. 5+5

- 14. (a) For a bivariate sample {(Y_i, X_i); i = 1,...,n}, consider regression model Y_i = βX_i + ε_i, i = 1,...,n, where ε_i is independent of x_i and ε_i's are independent and identically distributed as N(0, σ²). Derive a test for H₀: β = 0 against H₁: β ≠ 0.
 - (b) If $X_1, ..., X_n$ be a random sample from $N(\mu, \sigma^2)$, find the sampling distribution of

$$\sqrt{\frac{n}{n-1}} \left(\overline{X}_n - X_n\right) / \sqrt{\left\{ (n-1)S_n^2 - \frac{n}{n-1}(X_n - \overline{X}_n)^2 \right\} / (n-2)},$$

where $\overline{X}_n = \frac{1}{n} \sum_{1}^n X_i$ and $S_n^2 = \frac{1}{n-1} \sum_{1}^n \left(X_i - \overline{X}_n\right)^2.$ 6+4

- 15. (a) Let the random variables X and Y be distributed as $\chi^2_{n_1}$ and F_{n_1,n_2} respectively. For any $\alpha \in (0, 1)$, χ^2_{α, n_1} and F_{α, n_1, n_2} be defined by $P(X \ge \chi^2_{\alpha, n_1}) = p(Y \ge F_{\alpha, n_1}, n_2) = \alpha$. Then show that for large n_2 , $\chi^2_{\alpha, n_1} \approx n_1 F_{\alpha, n_1, n_2}$.
 - (b) For a bivariate sample $\{(X_{1i}, X_{2i}), i = 1, ..., n\}$ from bivariate normal distribution with unknown parameters $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$, derive a test for $H_0: \sigma_1^2 = \sigma_2^2$ against $H_1: \sigma_1^2 \neq \sigma_2^2$. 5+5
- 16. (a) Let $X_1, ..., X_n$ be i.i.d. random variables with continuous d.f. F and let $X_{(i)} < ... < X_{(n)}$ be the order statistics. If M_0 be the unique population median, then show that

$$P_{F}(X_{(r)} \le M_{0} \le X_{(s)}) = \left| \sum_{k=r}^{s-1} \binom{n}{k} \right| \left(\frac{1}{2}\right)^{n}, r < s.$$

Hence or otherwise find a confidence interval of M_0 with coverage probability at least $1 - \alpha$ for some $\alpha \in (0, 1)$.

(b) Find the mean and variance of Student's *t*-distribution. Show that its density tends to N(0, 1) as degrees of freedom becomes large. 6+4

(3)