V(5th Sm.)-Physics-H/DSE-A-1(a)/CBCS

2021

PHYSICS — HONOURS

Paper : DSE-A-1(a)

(Advanced Mathematical Methods Theory)

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question nos. 1 and 2, and any four questions from the rest (Q. 3 to Q. 8).

1. Answer *any five* from the following :

(a) Show that the inverse of a linear operator is also a linear operator.

- (b) Define a Unitary operator. Show that transformation by a unitary operator preserves the inner product of the vectors.
- (c) Use Gram-Schmidt process to transform the basis vectors $u_1 = (1, 1, 1)$, $u_2 = (-1, 1, 0)$, $u_3 = (1, 2, 1)$ into an orthogonal basis $\{v_1, v_2, v_3\}$ assuming standard Euclidean inner product.
- (d) The set of all real triplets (x, y, z) forms a vector space. Check whether the mapping $(x, y, z) \rightarrow (x, y, 0)$ is a linear transformation or not.
- (e) When a pair of elements of a group is said to be conjugate to each other? Define class of a group.
- (f) Show that a second rank contravariant symmetric tensor remains symmetric under a general coordinate transformation.
- (g) Show that the SU(2) group has only three independent parameters.
- 2. Answer any three questions :
 - (a) Find g^{ij} and $g \equiv \det(g^{ij})$ corresponding to the metric tensor $ds^{2} = 5(dx^{1})^{2} + 3(dx^{2})^{2} + 4(dx^{3})^{2} - 6dx^{1}dx^{2} + 4dx^{2}dx^{3}$ 5
 - (b) Define projection operators. Prove that projection operators P are pairwise orthogonal *i.e.* $P_i P_j = 0$ if $i \neq j$ and $P_i^2 = P_i$. Show that it can only have eigenvalues 0 and 1. 1+2+2
 - (c) Using the properties of the Levi-Civita tensor ϵ_{iik} show that

(i)
$$\vec{A}.(\vec{A}\times\vec{B})=0$$

(ii)
$$\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \nabla^2 \vec{A}$$
 2+3

(d) Show that the matrices : $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ form a basis for the vector space formed by the set of all 2×2 real, symmetric matrices.

Please Turn Over

 2×5

V(5th Sm.)-Physics-H/DSE-A-1(a)/CBCS

(e) Consider two groups G and G'. The group G consists of four elements $\{1, i, -1, -i\}$ with ordinary multiplication as the rule of combination. The elements of the other group G' are the following four matrices with matrix multiplication as the rule of combination.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, D = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

(2)

Using group multiplication tables, show that G and G' are isomorphic.

- **3.** (a) How do we define dimension of a linear vector space? Define inner product space. When do we call an inner product space to be complete?
 - (b) From Cauchy-Schwarz inequality $|\langle U|W\rangle| \le |U||W|$, prove the Triangle inequality $|U+W| \le |U|+|W|$ where $|U\rangle$ and $|W\rangle$ are two non-zero vectors in an inner product space, and for any vector $|A\rangle$, $|A| = \sqrt{\langle A | A \rangle}$.
 - (c) When do we call the eigenvalues of an operator to be degenerate? Show that two commuting Hermitian operators possess a set of common eigenvectors. Assume the eigenvalues are nondegenerate. (1+2+2)+2+(1+2)
- **4.** (a) Let the matrix representation of an operator *T* on *V* be of the form : $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ with respect to a

set of basis $\hat{e}_1, \hat{e}_2, \hat{e}_3$. How does the representation changes in a new set of basis—

$$\hat{f}_1 = \frac{1}{\sqrt{2}} (\hat{e}_1 + \hat{e}_2), \quad \hat{f}_2 = \frac{1}{\sqrt{2}} (-\hat{e}_1 + \hat{e}_2), \quad \hat{f}_3 = \hat{e}_3 \gamma$$

- (b) What do you mean by a Normal operator? Given that A is a Normal matrix, its eigenvalues λ_j are in general complex. Show that $\operatorname{Re}(\lambda_j)$ and $\operatorname{Im}(\lambda_j)$ are eigenvalues of $(A + A^{\dagger})/2$ and $(A A^{\dagger})/2$ respectively.
- (c) Show that the eigenvalues of a Hermitian operator are real and the eigenvectors belonging to different eigenvalues are mutually orthogonal.
- 5. (a) Two adjacent edges of a uniform square plate of mass M and side a are chosen as the x and y axes of a three dimensional Cartesian coordinate system. Find the inertia tensor for the plate with respect to the axes chosen. Find the principal moments of inertia.
 - (b) The moment of inertia tensor of a body is $\begin{pmatrix} I_1 & 0 & 0 \\ 0 & I_2 & 0 \\ 0 & 0 & I_3 \end{pmatrix}$. Prove that if $I_1 = I_2$, then the moment of

inertia of the body about any axis in the x - y plane, passing through the origin is the same. (5+3)+2

- 6. (a) Show that the familiar Kronecker delta δ_{kl} is really a mixed tensor of rank two δ_l^k . Why is it called
 - (b) (i) The field strength tensor $F_{\mu\nu}$ is defined by $(\partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu})$ where A_{μ} is the four-vector potential. Express the components of $F_{\mu\nu}$ in terms of the electric and the magnetic field \vec{E} and \vec{B} .
 - (ii) Given the components of \vec{E} and \vec{B} in a certain inertial frame *S*, find the components of \vec{E} and \vec{B} in another inertial frame *S'*, moving with a uniform velocity *v* with respect to *S* along the common *x*-axis. (2+1)+(3+4)
- **7.** (a) Identify the elements in the symmetry group of a rectangle. Hence construct the multiplication table for this group.
 - (b) Is this group Abelian?

an isotropic tensor?

- (c) Identify any two subgroups of this group.
- 8. (a) Show that the group generated by two commuting elements A and B such that $A^2 = B^3 = E$, is cyclic.
 - (b) Justify that SO(2), the group that describes rotational symmetry about a single axis, is an example of a Lie group. Show that the generator of this group is one of the Pauli matrices.
 - (c) Consider the Lie algebra with basis $\{e_1, e_2, e_3\}$ and the commutators

 $[e_1, e_2] = e_3, \ [e_2, e_3] = e_1, [e_3, e_1] = e_2.$

Find the adjoint representation.

3+(2+2)+3

V(5th Sm.)-Physics-H/DSE-A-1(a)/CBCS

(2+5)+1+2