S(1st Sm.)-Physics-413/(CBCS)

2018

PHYSICS

Paper : PHY-413

(Quantum Mechanics-I)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer any five questions.

1. (a) A spin-1/2 particle is in the spin state

$$\left|\beta\right\rangle = A \begin{pmatrix} 1+i\\ 1-i \end{pmatrix}$$

written in the basis of eigenvectors of \hat{S}_z . Find the probabilities of getting $+\frac{\hbar}{2}$ and $-\frac{\hbar}{2}$ if you measure \hat{S}_r .

- (b) Consider a charged particle of charge q and mass m in a harmonic potential $\frac{1}{2}m\omega^2 x^2$ in one dimension in a weak electric field ε along the x direction. Determine the exact energy values. Next, consider the weak field as a perturbation and compute the correction to the energy values using up to second order perturbation theory. 4+(2+4)
- 2. (a) Consider a particle in a spherical well such that

$$V(r) = 0; r \ge R$$

= $-V_0; r < R$

Show that for the state with zero angular momentum, a bound state is possible only if $V_0 \ge \frac{\pi^2 \hbar^2}{8mR^2}$.

(b) The ${}^{2}P_{1/2}$ and ${}^{2}S_{1/2}$ levels (for $n \ge 2$, *n* being the principal quantum number) for the hydrogen atom remain degenerate after considering relativistic correction and spin orbit interactions. Into how many levels will they split in a weak magnetic field *B* in the *z* direction? Find the spacing between the lines obtained as a result of the removal of degeneracy. Derive the formula you have to use. 5+5

Please Turn Over

S(1st Sm.)-Physics-413/(CBCS)

3. (a) Consider a particle of mass *m* moving in a double delta potential $V(x) = -\alpha \left[\delta(x+a) + \delta(x-a) \right]$, where α and *a* are positive constants. Argue that energy eigenstates will have definite parity. Let the energy eigenvalue be -|E|. Defining $\mathcal{K} = \sqrt{2m|E|}/\hbar$, prove that *k* statisfies

$$tanh(\mathcal{K}a) = \frac{2m\alpha}{\hbar^2 \mathcal{K}} - 1$$
 for the case of the solution with even parity.

- (b) Prove that $(1/\sqrt{2})(1+i\hat{\sigma}_x)$ acting on a two component wavefunction (a column matrix with two rows) can be regarded as the matrix representation of rotation operator about x-axis by an angle $\pi/2$. (2+4)+4
- 4. (a) If $|n\rangle$ is the *n*-th eigenstate of the Hamiltonian of a particle of mass *m* moving under a onedimensional potential $V(x) = \frac{1}{2}m\omega^2 x^2$, calculate (i) $\sqrt{\langle n | \Delta x^2 | n \rangle}$ and (ii) $\sqrt{\langle n | \Delta p^2 | n \rangle}$ for position (\hat{x}) and momentum (\hat{p}) operators respectively. Show that the product of (i) and (ii) is minimum for n = 0. For any operator \hat{O} , $\Delta \hat{O}^2 = \hat{O}^2 - \langle \hat{O} \rangle^2$. You may find the following definition of annihilation operator \hat{a} handy in your calculation : $\hat{a} = (m\omega\hat{x} + i\hat{p})/\sqrt{2m\omega\hbar}$.
 - (b) Evaluate the commutator $\left[\hat{x}_{\alpha}, \exp\left(-i\frac{\hat{p}\cdot\hat{a}}{\hbar}\right) \right]$. \hat{x}_{α} and \hat{p}_{α} are the components of position and momentum operators respectively. a_{α} s are dimensionful numbers. Hence, show that for any state $|\psi\rangle, \langle\psi|\hat{x}_{i}|\psi\rangle = \langle\psi'|\hat{x}_{i}|\psi'\rangle a_{i}$, where, $|\psi'\rangle = \exp\left(-i\frac{\hat{p}\cdot\hat{a}}{\hbar}\right)|\psi\rangle$. (5+1)+(3+1)
- 5. (a) Calculate $\langle 0 | \hat{x}(t) \hat{x}(0) | 0 \rangle$. Here, $\hat{x}(0)$ and $\hat{x}(t)$ are position operators at time t = 0 and time t respectively for a particle moving in one dimension under $V(x) = \frac{1}{2}m\omega^2 x^2$. $|0\rangle$ is the ground state of the Hamiltonian operator.
 - (b) Motion of a particle with rest mass *m* and charge *q* in a uniform magnetic field $\vec{B} = B_0 \hat{z}$ is described by a Hamiltonian $\hat{H} = -\left(\frac{qB_0}{2mc}\hbar\right)\hat{\sigma}_z$. Initially, the particle is known to be in the state $0.6|+\rangle + 0.8|-\rangle$, where $|\pm\rangle$ are the eigenvectors of $\hat{\sigma}_z$ with eigenvalues ± 1 respectively.
 - (i) Calculate the probability for finding the state in the $(1/\sqrt{2})(|+\rangle + |-\rangle)$ state as a function of time.
 - (ii) Calculate the expectation value of $\hat{\sigma}_x$ as a function of time. 4+(3+3)

(2)

6. (a) A particle of mass m moves in a potential given by

$$V(r) = c \ln\left(\frac{r}{r_0}\right)$$

where c is a constant. Show that

- (i) All eigenstates have the same mean squared velocity. Find this value.
- (ii) The spacing between any two levels is independent of mass.
- (b) Find the upper bound on the ground state energy E_g for the one dimensional harmonic oscillator using a trial wavefunction of the form

$$\psi(x) = \frac{A}{x^2 + b^2}$$

where A is determined by the normalization and b is an adjustable parameter. You may use the

following integral
$$\int_{0}^{\pi/2} \sin^{m-1} \theta \cos^{n-1} \theta \, d\theta = \frac{1}{2} B\left(\frac{m}{2}, \frac{n}{2}\right)$$
(3+2)+5

- 7. (a) Interaction Hamiltonian of two spin- $\frac{1}{2}$ particles is given by $\hat{H} = \xi \left(\hat{\sigma}_x^1 \hat{\sigma}_x^2 + \hat{\sigma}_y^1 \hat{\sigma}_y^2 \right)$ where ξ is a constant. What are the energy eigenvalues? What are their degeneracies?
 - (b) Consider eight identical noninteracting spin-1/2 particles in a three dimensional isotropic harmonic potential of the form $\frac{1}{2}m\omega^2 r^2$. Determine the ground state energy.
 - (c) The Hamiltonian of a two-level system is given by

$$\hat{H} = \begin{pmatrix} E_1 & A \\ A & E_2 \end{pmatrix} = H_0(A = 0) + \hat{H}', \ (E_1, E_2 >> A; E_1 \neq E_2).$$

Obtain the first and the second order correction to E_1 using the stationary state perturbation theory. (4+1)+2+3